Encryption

CS 537 - Introduction to Operating Systems

Encryption

* Why use encryption?
* Can’t deny access to everything

— some files and/or information need to be
transported across public lines

— anyone can view this information

* Encryption makes the information look like

gibberish to anyone but the destination
— the destination can decrypt the message
* One important note

— encryption algorithms should be made public

Encryption
KEY KEY
plain text encryption encrypted message decryption
message box box

bad guy
listening in

plain text
message




Basic Idea

* Given a message m and a key k
— use a function Ej(m) to encrypt message
— use a function Dy(E;) to decrypt the message
* Could use exclusive OR as the function
-E,=m®k
-Dy=E,@k=m@®k®@k=m
* Major problem with this
— if m and E}, are known, can compute k

Cryptography

Cryptography is the study of message

encryption and decryption

* There exist functions E, such that knowing
E, and m does not yield k

e [m]* means that message m is encrypted
with key k

* Two major encryption algorithms

— conventional private key encryption

— public key encryption

Conventional Private Key

Also called Neeham/Schroeder protocol

* Each of the two machines agree upon a
private key that only they know
— this will be different for each session

* All messages are then encrypted and
decrypted with this key

* One major problem

— how do they get the key to start with?




Key Distribution

Only complete solution is “out-of-band”
transmission

— don’t send it over a network

— this is expensive

— has other risks (watch James Bond sometime)
Most systems actually use a network to get
and transmit keys

This requires trusting someone

Key Distribution

Use a key distribution center (KDC)
— everyone trusts this guy

Every computer has a private key that only
it and the KDC know

When A wants to communicate with B, it
contacts the KDC and it gives a random
key, k_, back to A

A then transmits k, to B

A and B then use this key to communicate

@ random number

Conventional Private Key

[K,, request, random, [K_, A]Kb]Ka

request and

(plain text)




Conventional Private Key

@ Request a key for communication
- random number will be used to prevent replay

@ KDC sends back the information for the following reasons
- K_: the key to be used by A and B
- request: verifies whose key A is getting
- random: prevents replay of previous session
- [K,, AJ¥®: encrypted message to send to B
- encrypted with A’s key so it is the only one that
can decipher it

@ Send K, to B using the encrypted response from KDC
- B is the only one that can decode this message

Conventional Private Key

@ B replies with a random number encrypted using K;
- this is a challenge to A to prove it actually
knows K

@ A replies by sending the random number + 1 back to B
- this is A’s response to prove it actually sent
the original message

At this point, A and B can now communicate with each other
using the private key, K,

Public Key

* There exist some encryption algorithms that
use a key pair

* If you encrypt with one key, you can only
decrypt with the other key

» The way public key encryption works is that
one of the pair is made public and the other
is kept secret

— hence, a secret key is only known by a single
machine

— everyone knows the public key




Key Distribution

* Now the public key can be sent unencrypted
over the network

— it does a bad guy no good unless he has the
secret key

— a machine will never share its secret key with
anyone
* To actually communicate with someone
— encrypt the message with their public key
— they are the only one that can decrypt it

Public Key

@[IA, ATPKD

@ [[message]PKb]SKa

Public Key

@ Send a message to B indicating a desire to communicate
- only B can decipher this message
- T, is a random identifier that A created

@ B responds with a message that only A can decipher
- by returning I, B verifies it’s really B
- also includes I as a challenge to make sure
Aisreally A

@ A responds to B’s challenge with the identifier that B
created
- now both parties know the other is who they
say they are




Public Key

@ All messages from A to B are encrypted with B’s public
key and then again with A’s secret key
- anyone can decipher the message encoded with
A’s secret key
- all they would get is the encrypted message that
only B can decode
- this is done to prevent others from injecting more
into the message sent by A
- need to be careful of this because anyone could
encrypt a message for B and attach it to A’s
message as it passes through

Public Key Cryptography

¢ So how does all of this math work?

* It’s actually quite simple
— to encode a message
¢ E(m)=m®mod n=C
— to decode a message
¢ DIC)=Cimodn=m

Public Key Encryption

* How is n computed?

— pick 2 big prime numbers (100 or more digits)
« these numbers will be p and ¢

» Everyone knows the value of n

— very difficult to calculate p and g given n




Public Key Encryption

* So what is the value of d?
— d is a large random integer that is relatively
prime to (p-1) x (g-1)
— hence, the greatest common divisor of d and
(P-Dx(g-Disl
* So what is the value of e?
— e is the multiplicative inverse of:
= dmod [(p-1) x (g-1)]
— hence
e exdmod [(p-1)x(g-D]=1
— like n, e is also made public

Public Key Encryption

* An example
—let’ssayp=5andq=7
-n=35
~ (D) x(q-1)=24
— several choices for d, we’llused =11
—thismeanse x 11 mod24=1 ==>e¢=11
—ifm=3
—C=m¢modn=3""mod35=12
—Cidmodn=12"mod 35=3=m

Certificate

* One major problem

— how does B guarantee that A’s public key is
really P,?

— have to trust someone again

« Assume there is a server C that both A and
B trust

— this server is someone like Verisine




Certificates

[A, C, P,JsKe

@ request for
certificate

Certificates

@ Send a message to C requesting a certificate

@ C replies with the certificate
- A'is the identity of A
- C is the identity of C
- P, is A’s public key
- All of this info is encrypted with C’s secret K
- anyone can decrypt this
- used for authentication, not secrecy

@ A sends certificate to B
- B then decodes it using C’s public key
- B now believes that it really has A’s public key




