
Encryption

CS 537 - Introduction to Operating Systems

Encryption

- Why use encryption?
- Can't deny access to everything
 - some files and/or information need to be transported across public lines
 - anyone can view this information
- Encryption makes the information look like gibberish to anyone but the destination
 - the destination can decrypt the message
- One important note
 - encryption algorithms should be made public

-
-

Basic Idea

- Given a message *m* and a key *k*
 - use a function $E_k(m)$ to encrypt message
 - use a function $D_k(E_k)$ to decrypt the message
- Could use exclusive OR as the function
 - $-E_k = m \oplus k$
 - $-D_k = E_k \oplus k = m \oplus k \oplus k = m$
- Major problem with this
 - if m and E_k are known, can compute k

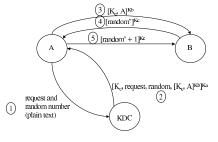
Cryptography

- Cryptography is the study of message encryption and decryption
- There exist functions E_k such that knowing E_k and m does not yield k
- $[m]^k$ means that message m is encrypted with key k
- Two major encryption algorithms
 - conventional private key encryption
 - public key encryption

Conventional Private Key

- Also called Neeham/Schroeder protocol
- Each of the two machines agree upon a private key that only they know
 - this will be different for each session
- All messages are then encrypted and decrypted with this key
- One major problem
 - how do they get the key to start with?

_				
_				

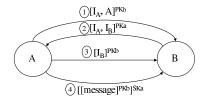

Key Distribution

- Only complete solution is "out-of-band" transmission
 - don't send it over a network
 - this is expensive
 - has other risks (watch James Bond sometime)
- Most systems actually use a network to get and transmit keys
- This requires trusting someone

Key Distribution

- Use a key distribution center (KDC)
 - everyone trusts this guy
- Every computer has a private key that only it and the KDC know
- When A wants to communicate with B, it contacts the KDC and it gives a random key, k_r , back to A
- A then transmits k_c to B
- A and B then use this key to communicate

Conventional Private Key



	7
Conventional Private Key	
Request a key for communication - random number will be used to prevent replay	
KDC sends back the information for the following reasons	
 random: prevents replay of previous session [K_c, A]^{Kb}: encrypted message to send to B encrypted with A's key so it is the only one that 	
can decipher it Send K _c to B using the encrypted response from KDC - B is the only one that can decode this message	
	٦
Conventional Private Key	
B replies with a random number encrypted using K _e this is a challenge to A to prove it actually knows K _e .	
A replies by sending the random number + 1 back to B	
 this is A's response to prove it actually sent the original message 	
•At this point, A and B can now communicate with each other using the private key, K_c	
8	
	٦
Public Key	
There exist some encryption algorithms that use a key pair	
If you encrypt with one key, you can only	
decrypt with the other key	
The way public key encryption works is that one of the pair is made public and the other	
is kept secret	
 hence, a secret key is only known by a single machine 	
everyone knows the public key	

Key Distribution

- Now the public key can be sent unencrypted over the network
 - it does a bad guy no good unless he has the
 - a machine will never share its secret key with anyone
- To actually communicate with someone
 - encrypt the message with their public key
 - they are the only one that can decrypt it

Public Key

Public Key

- (1) Send a message to B indicating a desire to communicate

 - only B can decipher this message
 I_A is a random identifier that A created
- 2 B responds with a message that only A can decipher

 - by returning I_A B verifies it's really B also includes I_B as a challenge to make sure A is really A
- 3 A responds to B's challenge with the identifier that B created
 - now both parties know the other is who they say they are

Public Key

- All messages from A to B are encrypted with B's public key and then again with A's secret key
 - anyone can decipher the message encoded with
 - A's secret key
 - all they would get is the encrypted message that only B can decode
 - this is done to prevent others from injecting more into the message sent by A
 - need to be careful of this because anyone could
 - encrypt a message for B and attach it to A's message as it passes through

Public Key Cryptography

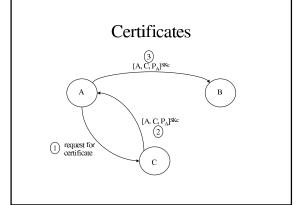
- So how does all of this math work?
- It's actually quite simple
 - to encode a message
 - $E(m) = m^e \mod n = C$
 - to decode a message
 - $D(C) = C^d \mod n = m$

Public Key Encryption

- How is *n* computed?
 - pick 2 big prime numbers (100 or more digits)
 - ullet these numbers will be p and q
 - $-n = p \times q$
- Everyone knows the value of n
 - very difficult to calculate p and q given n

•	
-	

Public Key Encryption


- So what is the value of *d*?
 - -d is a large random integer that is relatively prime to (p-1) x (q-1)
 - hence, the greatest common divisor of d and $(p-1) \times (q-1)$ is 1
- So what is the value of *e*?
 - -e is the multiplicative inverse of:
 - d mod [(p-1) x (q-1)]
 - hence
 - $e \times d \mod [(p-1) \times (q-1)] = 1$
 - like n, e is also made public

Public Key Encryption

- An example
 - let's say p = 5 and q = 7
 - -n = 35
 - $-(p-1) \times (q-1) = 24$
 - several choices for d, we'll use d = 11
 - this means e x 11 mod $24 = 1 \implies e = 11$
 - if m = 3
 - $-C = m^e \mod n = 3^{11} \mod 35 = 12$
 - $-C^{d} \mod n = 12^{11} \mod 35 = 3 = m$

Certificate

- One major problem
 - how does B guarantee that A's public key is really P_A ?
 - have to trust someone again
- Assume there is a server C that both A and B trust
 - this server is someone like Verisine

Certificates

- 1 Send a message to C requesting a certificate
- 2 C replies with the certificate

 A is the identity of A

 C is the identity of C

 P_A is A's public key

 All of this info is encrypted with C's secret K

 anyone can decrypt this

 used for authentication, not secrecy
- A sends certificate to B
 B then decodes it using C's public key
 B now believes that it really has A's public key