File Systems - Part I

CS 537 - Introduction to Operating Systems

File

* A named collection of related data that is
recorded on secondary storage
— text, binary, executable, etc.

* A file is broken up into chunks
— chunk is the smallest accessible piece of a file
— often called a record

e Internal Structure is dependant on OS
— in Unix, all chunks are 1 byte in size
— some systems may allow larger records

Naming

« Files are given human readable names
— necessary to allow users to remember files
* Length of name
— limits amount of description for names
» Case sensitive names or not
— foo vs Foo
* What characters are allowed in name
— Unix doesn’t allow spaces, Windows NT does




Types

* Not all systems support types
» Type indicates how OS should handle file
* Unix supports 3 types

— directory files, device files, regular files

— leave it to applications to support file types

« emacs and *.c files, javac looks for *_java, etc.

* Windows supports many types

— extension indicates what type file is

— word document (.doc), batch file (.bat), etc.

— double clicking on a file launches the program

Meta Data

* Information about a file
* Usually stored with the file
* Different systems record different data
* A few examples
— size of file
— creator, when created, last modification
— who is allowed to access the file
— number of links to the file
—etc

File Operations

* Most systems allow access to files through
the OS only

* This requires a set of system calls for files
— create, open, write, read, reposition, close, delete

* Some systems support many more functions




Creating a File

File name is placed in the file directory
— more on directories later

Space on disk is found for the file

— more on space allocation later

Initial meta data for the file is recorded
— creator, permissions, etc.

File is now available for usage

Open File Table

OS table that caches information on open
files

Prevents having to read file information
from disk on every access to a file

File Pointer (FP)

— indicates user’s current location in the file

An entry in the open file table includes
starting location of file on disk and the FP
File descriptor is the index of the file in the
open file table

Opening a File

Directory is searched for the file
Starting location of file is recorded in open
file table
FP is set to zero (beginning of file)
File descriptor is returned to user and that is
now used for accessing the file
— use FD instead of file name
Example
int fd = open(“filename”, READ | WRITE);




Opening a File

Possible for multiple users to open a file
Only one entry in open file table

Each user keeps its own copy of the FP

— each user can be in a different place in the file

Need to be careful about consistency
semantics

— what if two users have file open and one writes

Closing a File

When last reference to the file is closed, file
is removed from the open file table

Need to make sure all changes to the file are
written back to disk

— remember, file blocks are cached in memory for
performance reasons

Example
close(fd);

Deleting a File

Need to reclaim all the blocks on disk that
the file is using

Need to remove the file from the directory
structure

Caution

— may be multiple references to a file

— need to be careful about deletion

— more on this when discussing directories
Unix deletes a file when there are no more
references to the file




File Accesses

» Sequential

— must go through records in the order they exist in the
file

— to get to the N™ record, must first search through
records O to N-1
¢ Random
— allow user to access any record in a file directly
— sequential access can be easily simulated with random
access
¢ Indexed

— search an index to find a pointer to specific block on
disk

File Access

* Choice of access type can greatly effect
performance of file system

* Random and indexed access can lead a
programmer to “jump” all over file
— prefetching won’t help performance

» Sequential access keeps users localized
— prefetching can provide great benefits

* Programmers will do whatever API makes
easier

Reading / Writing a File

Location of read/write depends on type of
access allowed

— Unix requires all accesses to occur from
location of FP

— FP is updated after each read/write

Reads and writes occur in memory

— block is transferred to/from disk as needed
e Example

int count = read(fd, buffer, length);

int count = write(fd, buffer, length);




Repositioning Within File

Many systems provide random access via a
seek system call
This allows a user to “jump” to a specific
location in a file
What it actually does is change the FP
Example
1seek(fd, distance, whence);

— whence indicates where to seek from

* beginning of file, current position, end of file




