File Systems - Part II

CS 537 - Introduction to Operating Systems

Directory

e A directory maps file names to disk
locations

* A single directory can contain files and
other directories

e A modern file system is made up of many
directories

File Names

¢ A file name is given as a path

— aroad map through the directory system to the
files location in the directory

* Relative path name

— files location relative to the current directory
* Absolute path name

— files location from beginning of directory

File Names

* Each file must have a unique path in the
directory

* A file can have more than one path name

* The same path name cannot be used to
represent multiple files

File Names

Good Bad

foo > file 1
joe \

test

bar ——» file2

test

<

car ————> fjlg 3

One-Level Directory

» All files are listed in the same directory

Directory —»{bOO da cat ‘ dog‘ test ‘pm] ‘data X

[

One-Level Directory

* Easy to implement

* One major problem is the unique name
requirement
— imagine 2 users both doing project 2
« in single directory, they couldn’t both name it proj2
— even for single user system it is difficult to keep
track of the names of every file

Tree Structured Directories

¢ Directory structure is made up of nodes and
leafs

¢ A node is a directory
* Aleafiis afile

» Each directory can contain files or sub-
directories

* Each node or leaf has only 1 parent

Tree Structured Directories

root directory

mike | beth | pat

mk pzo?' bt pio' ? 120?'
O O O

Tree Structured Directories

¢ Allows users to have there own directories
— users can create there own sub-directories

* Different files can now have the same name
— as long as the absolute path is different

e A user has a current directory
— directory the user is currently in

Tree Structured Directories

e Traversing the tree can be done in two ways
— absolute path
* begin searching from the root (/usr/beth/proj)
— relative path
* begin searching from current directory

 assume in usr directory and want to access beth’s
project
— beth/proj

Tree Structured Directories

* Trees are fairly easy to traverse and
maintain

* One major problem is the sharing of files
— remember, only one parent per node/leaf

e Would like to be able to have multiple
references to a file or directory

Acyclic Graph Directories

» Similar to a tree except each node or leaf
can have more than one parent

* One requirement is that there can be no
cycles
— cycles can cause infinite search loops

* File and directory sharing now becomes
easy

Acyclic Graph Directories

root directory

beth [pa

[betn [pat |
mic[proi | [proil b ?l links |
(v [e

n‘ls‘ ‘ls‘cat‘vi

Acyclic Graph Directories

¢ Unix uses this structure

* Reference from one directory to another
directory or file is called a link

* In Unix, a reference count is kept for each
file (or directory)

* When no more references to a file, it is
deleted
— notice, Unix has no explicit delete method
— uses unlink to remove a reference to a file

Cycles

* Cycles in a graph can present a major problem

/ now unlink this
—> [=]

this is now garbage

lnk

* Reference counting wouldn’t work
— would need to do garbage collection
— garbage collection on disk is extremely time consuming

Cycles

¢ Cycles present other problems

» Imagine trying to delete everything beneath bar
— we first need to search for everything contained in bar

— an infinite loop will develop
« search to Ink, Ink points to bar, bar points to Ink, ...

Links

* Hard links

— actual entry in a directory

— points directly to another directory or a file
e Symbolic links (soft links)

— special file that contains a path name to another
file or directory

— when it is encountered, read the file and follow
the path described in the file

— does not count in reference counting scheme

Links

* To prevent cycles, do not allow more than
one hard link to a directory

— count how many times a search “loops”

— if it loops a certain number of times, exit search
routine

ref count here is

now delete this rnm now zero and it can
/ " ' be deleted
m — fm
@ ‘
softLink softLink

Directory Entry

¢ A directory entry contains a name and a
location on disk

— the name can be a file
— the name can be another directory

 This is a hard link to another entity

‘ name ‘ Tocation ‘

Directory

* A directory is made up entries

* In Unix, a directory is almost identical to a
regular file

* How does Unix know it is looking at a
directory and not a regular file?

— information in meta data marks it as a directory

Directory

Marked as a directory file

[a]

Meta Data
this could be another | » foo 23
directory
v test.dat 110
~_» progc 94

these would be files

Searching the Directory

« User gives an absolute or relative path name
* A copy of the users current directory is
cached memory
 If user gives relative path, use this cache
 If user gives absolute path, go to disk and
find the root directory
— continue search from there
e Unix has a function called namei
— namei does the actual directory search

namei()

int namei(int startDirLoc, String [] path) {
for(int i=0; i<path.length; i++) {
if(startDirLoc != directoryFile)
ERROR;
startDirLoc = getDiskLocation(startDirLoc, path[i]);
if(startDirLoc == 0)
ERROR;
}

return startDirLoc;

namei()

* Example teste
39
currentDir
23 d
public
mattmee| 19 mattmec 110
‘ 19 [d] Ld]
testc | 39
public] T10
namei()
* Example

— startDirLoc = 23
— path = {mattmcc, public, test.c}
« test is the actual file we are looking for on disk
— a program like emacs might do the following
e int fileLoc = namei(startDirLoc, path);
— start at currentDir and look for mattmcc -> 19
— make 19 the current search directory and look
for public -> 110

— make 110 the current search directory and look
for test.c -> 39 (this is the location we want)

Protection

* A good file system should provide a means
of controlling access to files

¢ In early systems with only a single user, this
was not an issue

* Today, almost anyone can access a
computer either through a LAN or through
the internet

Controlling Access

¢ The user that creates a file should have all
rights to that file
— that user can read, write, and delete the file
— the user should also be able to control access
rights of other users to that file
» For example
— imagine a supervisor creates a work schedule
— the supervisor should be able to read and
modify that schedule
— the workers should all be able to read the
schedule
* but they should not be able to modify it

Access Control List

» For each file, the author could specify every other users
access rights to the file
— this is very flexible
— this is very tedious for a user to do
¢ Instead of specifying all users, system could have a default
and only specify specific users to grant access to
— still very flexible
— much less work on the part of the file creator
— default access may be read-only or no access at all
¢ Problem with both of these approaches is the amount of
space needed in meta data of file
— have to record this information and it may vary (or grow over time)

Unix Access Control

e Unix uses a much simpler strategy
— there are three type of people in the world
¢ owner of the file (usually the creator)
« a group to which the owner belongs
« everyone in the world
— for each of these categories, the owner of the
file specifies rights
¢ Directories and files have rights associated
with them

10

Unix Access Control

*» Possible rights for a file
—read

« can read the file, can list a directory, can copy the
file

— write

« can write the file, can add or delete files from a
directory

— execute
 can execute an executable file

Unix Access Control

» The rights for each type of user is specified
when the file is created

» These rights can be changed by the owner
of the file

* It takes 9 bits to record the access rights of
the file

' ' '

owners rights groups rights universal rights

11

