CS 537 — Introduction to Operating Systems

Input / Output

* Many modern system have multiple busses

— memory bus

« direct connection between CPU and memory only

* high speed

—1/0 bus

« connection between CPU, memory, and I/O

* low speed

Basic I/0O Hardware

Memory Bus

Basic I/O Hardware

CPU

Memory

/0

I

1/0 Bus

Device Controllers

* 1/O devices have controllers
— disk controller, monitor controller, etc.
» Controller manipulates/interprets electrical signals
to/from the device
» Controller accepts commands from CPU or
provides data to CPU
* Controller and CPU communicate over I/O ports
— control, status, input, and output ports

Adding the Device Controller

Memory Bus l,x"’/ "
i status register
cr Memory |)

Device Controller

1/0 Bus

Communicating with 1/0

¢ Two major techniques for communicating
with I/O ports
1. Special Instructions
2. Memory Mapped I/O

Special Instructions

¢ Each port is given a special address
¢ Use an assembly instruction to read/write a
pOTt
e Examples:
— OUT port, reg
« writes the value in CPU register reg to I/0 port port
— IN reg, port
« reads the value at I/O port port into CPU register reg

Special Instructions

e Major Issues

1. communication requires the programmer to use
assembly code
e C/C++/Java and other high-level languages only work
with main memory
2. how to do protection?

« users should have access to some I/O devices but not to
others

Memory Mapped 1/0

* 1/O ports are mapped directly into memory
space
¢ Use standard load and store instructions
« Examples:
— ST port, reg
« stores the value at CPU register reg to I/0O port port
— LD reg, port
« reads the value at I/O port port into CPU register reg
* Can now use high-level language to
communicate directly with I/O devices

Memory Mapped 1/0

Requires special hardware to map specific
addresses to 1/0 controllers instead of
memory

— this can be tricky with 2 busses

« Part of the address space is now unusable

— this does not mean part of physical memory is
unusable

Memory Mapped 1/0

* Major Issues

1.caching of memory values in CPU
* do not want to cache I/O port values in memory because
they may change
* imagine a busy wait — the value it is checking will never
change if it is cached
 hardware must allow some values to not be cached
2.how to do mapping of addresses to ports
« with two busses this can be tricky
* need to do some kind of “snooping” on address bus

Transferring Data (read request)

1. CPU issues command to I/O device controller to
retrieve data
e thisis slow
2. Device places data into controller buffer
Device controller interrupts the CPU

4. CPU issues command to read a single byte (or
word) of data from controller buffer

5. Controller places data into data register
6. CPU reads data into memory
7. Repeat steps 4, 5 and 6 until all data is read

hed

Transferring Data (read request)

! ’
{ status register
CPU Memory @ \/SD

4 l 7777777777

<

Device Controller

Direct Memory Access

* Problem with previous approach:
— if CPU must issue all commands to I/O devices,
it can’t do anything else
— it may take a long time to transfer all data
* Solution:

— allow I/O to communicate directly with
memory (Direct Memory Access — DMA)

DMA Controller

* Need a special hardware device to
communicate between CPU and I/O

¢ DMALC has several registers
1. memory address to read/write from/to
2. I/0O port to communicate with
3. number of bytes to transfer
4, direction of transfer (read or write)

Basic Hardware with DM A

1

| [command register

O status register
cru Memory | | pmac oG

Vi memme o/

@ Device Controller

Basic Hardware with DMA

1. CPU instructs device controller to read

¢ device controller informs CPU when the read is complete —
data in controller buffer

CPU programs the DMAC

3. DMAC asks for byte (or word) of data to be
written to memory

Device controller writes data to memory
5. Device gives acknowledgement to DMAC

« repeat steps 3, 4, and 5 until all data is transferred

6. DMAC interrupts CPU when transfer complete

More on DMAC’s

¢ Some DMA controllers have multiple
“channels”

— can allow communication with more than one
device simultaneously

* Some systems choose not to use DMA at all
— why?

