I/O Software

CS 537 — Introduction to Operating Systems

Programmed I/O

* Basic idea:
— CPU does all communication directly with device
— CPU waits for device to complete one operation before
issuing another request
» Flow of events
— user program issues a request for I/O
— OS copies a single byte (word) to/from device
— OS waits for device to become ready again
— OS then copies the next byte (word) to/from device
— repeat this process until all the data copied
— return control to the user

Programmed 1/0O

 psuedo-code for reading from device

for(i=0; i<count; i++) {
while(device_status_register '= READY);
device_data_register = bufferl[i];

}

return_to_user();

Programmed 1/0

¢ Advantages:

— simple to implement

— very little hardware support
* Disadvantages:

— busy waiting (polling)

« ties up CPU for long periods with no useful work
(maybe)

Inerrupt Driven 1/0

* Basic idea:

— similar to programmed I/O but instead of busy waiting,
block the process and have the I/O device interrupt
when it is ready

* Flow of events:

— user program issues a request for I/O

— OS copies a single byte (word) to/from device

— OS schedules another process

— device interrupts the CPU

— OS then copies the next byte (word) to/from device and
reschedules again

— repeat this process until all the data copied
— return control to the user

Interrupt Driven 1/O

» psuedo-code for reading from device

— code executed on system call
block_user();
count =n; i=0;
while(device_status_register '= READY);
device_data_register = buffer[i];
schedule();

— code executed on interrupt from device
if(count == 0) { unblock_user(); }
else {
device_data_register = bufferfi];
count--; 4+
1

return_from_interrupt();

Interrupt Driven 1/0

¢ Advantages:
— system can do useful work while device not
ready
¢ Disadvantage

— lots of interrupts
* interrupts are expensive to do
« have to run interrupt code fragment on everyone
« what if the device is not slow?

DMA

¢ Basic idea:

— exactly like programmed I/O but instead of the device
communicating with CPU, it communicates with DMA
controller

» Flow of events:
user program issues a request for I/O
— OS blocks calling process
— OS programs DMA controller
— OS schedules another process
— DMA controller then does programmed I/O
* with busy waits and all
it may actually be able to handle more than one device at a time
— DMA interrupts CPU when data transfer complete
OS unblocks user process

DMA

 psuedo-code for reading from device

— code executed on system call
block_user();
set_up_DMAC();
scheduler();

— code executed on interrupt from device
unblock_user();
return_from_interrupt();

DMA

¢ Advantages
— only one interrupt to the CPU for a single I/O
operation
= CPU only bothered when I/O finished
* Disadvantages
— Memory conflicts between CPU and DMAC
— DMAC is much slower than CPU
= what if device is very fast?
 what if there is no other work for CPU?

I/O Software Layers

* Modern I/O software is broken into layers
— a common interface from one layer to the next allows
for high degree of flexibility
« abstraction
— you don’t need to know how each layer works — you
just need to know how to interact with it

user-level I/0 software

device-independent OS software

device drivers interrupts
hardware

User Level Software

e library calls
— users generally make library calls that then
make the system calls
— example:
« int count = write(fd, buffer, n);
« write function is run at the user level
« simply takes parameters and makes a system call
— another example:
« printf(“My age: %d\n”, age);
« takes a string, reformats it, and then calls the write
system call

User Level Software

* Spooling
— user program places data in a special directory
— a daemon (background program) takes data from
directory and outputs it to a device
« the user doesn’t have permission to directly access the device
= daemon runs as a privileged user
— prevents users from tying up resources for extended
periods of time
« printer example
— OS never has to get involved in working with the I/O
device

Device Independent OS Software

* Make devices look like files
— this is the Unix and Windows approach
* You can open, read, write, close, etc. a device
— some devices may be read only (keyboard)
— others may be write only (monitor)
» Example — writing to a disk
fd = open(*/dev/hdal”, O_RDONLY);
Iseek(fd, 1024, SEEK_SET);
write(fd, buffer, size);
close(fd);

Device Independent OS Software

¢ OS knows the file represents a device because the
meta data says so
— in Unix, there is no file — just an inode
* How does OS know what to do on a read?

— meta data includes a major and a minor number
« major: what category of device it is
« minor: what specific device in the category

* Protection of devices is now simple
— put the access rights for the device in the meta data

* How to deal with errors?
— let the lower level, device specific software deal with it
— return standard error codes to indicate a failure

Device Independent OS Software

* Many devices require buffering
— want to make this interface common for all devices as
well
* Where to buffer the data?

— usually, not in user space
* page might get swapped out
— usually place buffered data in the kernel space
* locked in memory
— double buffering
« while copying data to/from user space, more data may arrive

 keep a second buffer for new data while the other is being
transferred

« switch back and forth between the two buffers

Device Independent OS Software

* Advantages of buffering
— increases efficiency
« can transfer entire blocks instead of single words
— allows for asynchronous operation
« user transfers data to the kernel and moves on
» Disadvantages of buffering
— lots of copying can reduce performance

Device Independent OS Software

user space %/

kernel space

buffer

Data gets copied 5 times!

R

+«——WHY?

W | w |
network

network
controller

Drivers

* At some level we must deal with the fact that I/O
devices are different
* Drivers are the level of software that do this
— usually provided by the device vendor
* A single driver handles a single device
— or maybe a class of devices
« imagine IDE disks of different sizes and speeds
— use the major number to indicate which driver to run
— the minor number is passed as a parameter to the driver
« which specific device of a particular class

Drivers

* Basic driver functions
— accept read/write commands from the device
independent layer and translate into actual
commands for the device
« must write/read the various I/O ports of the device
— translate input parameters and check for errors
— handle device errors if possible
« maybe retry a read request if checksum fails

Drivers

* Intoday’s world, drivers are built into the
operating system
Better solution would be to put them in I/O space
and provide system calls for I/O port interaction
— kernel wouldn’t crash because of a buggy driver
* Drivers are often implemented as separate
processes

— allows them to block and let the OS reschedule

— makes interface between drivers and OS much simpler
* Devices are constantly added and removed

— must allow drivers to be dynamically plugged into the
system

