Interprocess Communication (IPC)

CS 537 - Intoduction to Operating Systems

Cooperating Processes

* How do we let processes work together?
* Possible solutions:
— share memory
« fast and simple
« how to keep secure and synchronized?
— message passing
* no shared memory
« send and receive messages
« more difficult to program
« makes security and synchronization simpler

Shared Memory

« Easiest way for processes to communicate

— at least some part of each processes” memory region
overlaps the other processes’

O A % NN
\processB

process A shared memory

« If A wants to communicate to B
— A writes into shared region
— B reads from shared region
¢ Can use simple load and stores
— no special commands for communication

Shared Memory

¢ How much memory to share?
— none (this really isn’t shared memory :)
— some
—all

* How to allocate shared memory?
— automatically on creation of a child
+ parent and child share memory
— explicitly through system calls
* a process requests OS to set up a shared memory segment
* a process makes another system call to share the memory
* No matter how it’s shared, the memory resides in
user space

Shared Memory

* Two major disadvantages to shared memory
— synchronizing access
« B needs to know when A has written a message into
the shared memory
— 50 B can read the message
¢ A needs to know when B has read the message
— 50 A can write another message
— security
* possible for A or B to accidentally write over a
message
— program bug
* B may maliciously read or write some part of A’s
memory that it shares

Simple Examples

¢ Sharing memory
char* shareMem[80]; // memory accessible to A and B
int value; // more memory shared by A and B

Process A Process B
strcpy(shareMem, “hello”); strepy(myBuf, shareMem);
value = 23; myValue = value;

* notice that A and B communication does not involve the
operating system or any special calls
— just reading and writing regular memory

¢ also notice, if B performs it’s read of shareMem before A
writes to it, B will get garbage

— we'll cover synchronization in a week

Shared Memory Review

¢ Intuitive to program

— just access memory like any other program
* High performance

— does not get the OS involved

* Must synchronize access to data
— more on this later

Have to trust other processes sharing the
memory

No Shared Memory

* In the absence of shared memory, the OS
must pass messages between processes
— use system calls to do this

 Several major techniques for doing this
— pipes, message passing, ports

* Several major issues to consider

IPC Issues

direct or indirect communication

— naming issues

synchronous or asynchronous communication
— wait for communication to happen or assume it does
« automatic or explicit buffering

— how to store messages
« fixed messages or variable sized

— greatly affects overhead and memory requirements

Indirect vs. Direct Naming

 Direct Naming
— explicitly state which process to send/receive
— code fragment
¢ send(Process P, char [| message, int size)
« receive(Process P, char [] message, int size)
— must know before hand exactly where to
send/receive message

Indirect vs. Direct Naming

¢ Indirect naming
— use “mailboxes”
— processes extract messages from a mailbox
* may grab a message from a specific process
* may grab a specific type of message
¢ may grab the first message
— send/receive to/from mailboxes
— code fragment
* send(Mailbox A, char [] message, int size)
* receive(Mailbox A, char [] message, int size)

Synchronization

Blocking send
— suspend sending process until message received
Non-blocking send

— resume process immediately after sending
message

Blocking receive

— suspend receiving process until data is received
Non-blocking receive

— return either a message or

— null if no message is immediately available

Synchronization Trade-Offs

¢ Blocking
— guarantees message has been delivered
— drastically reduces performance

* Non-blocking

— much better performance (hides latency of
message sending)

— could cause errors if messages are lost

Timeout

* One other option is to use timouts
— typically with a blocking send/receive

« If a process blocks for a certain amount of
time, call returns with a special error code
— indicates message wasn’t sent/received

» User can write special code to deal with this
case

Timeout Example

char msg[80]:
int errCode;

setTimeout(250); // 250 ms before timing out
if((errCode = recv(mailbox, msg, 80)) == TIME_OUT) {
// handle this case
}
else if(errCode < 0) { // some kind of error
// handle error

}

Buffering
» Buffering allows messages to be saved and
read or transmitted later
» Requires sufficient memory to store
messages
* Can drastically improve performance of
applications

Types of Buffering

e Zero Capacity

— no buffering at all

— must be “listening” when a message comes in
* Bounded Capacity

— some max, 1, of messages will be buffered

— be careful when queue gets full
* Unbounded Capacity

— no limit to the number of messages

— not usually very realistic assumption

— this is not very realistic, buffers usually have
finite capacity

Buffering Example
l ” user space
recv msg X (time: 25) kernel space
send msg X (time 10) send msg Y (time: 15)
xly[[[[[]

bounded buffer

Note: OS stores message so that P, can go back to work
instead of waiting for Py to do a receive

Bounded Buffers

* What to do if a bounded buffer gets full?
— make the send call fail
e return an error code to the user program
— make the send call block

e even if it normally wouldn’t do so

Message Length
» Fixed Length

— how big to make the messages?
* Variable Length
— how to handle buffering?

Fixed Length Messages

* makes buffering simpler
— know exact size needed for each message
¢ to send a large message, break to small bits
e can hurt performance for large messages
— overhead of creating many small messages
* What size?
— too big wastes buffering space in memory
— too small hurts performance for large messages
— some systems provide several message sizes

Variable Length Messages

* Provides great flexibility

— send as much data as you want and only incur
overhead of setting up message once

* How do you guarantee buffering space?

— what if buffer is almost full when a new, large
message comes in?

— what if one message is larger than entire buffer?
* Consider variable size up to some max
— this is one of the most common methods

Common Message Passing Methods

* Pipes
— direct connection between 2 or more processes
* Message Queues

— shared buffer in OS where processes place and
retrieve messages

¢ Ports

— process specific buffer in OS

Pipes
» Conceptually
— a pipe is a link between two processes
— one process writes into one end of the pipe
— another process reads out of the other end

= messages are read in the order they are written

flow

pipe

— for both processes to be able to read and write
simultaneously, two pipes are necessary

Pipes

¢ Unix implementation
— apipe is represented as a file without any data
« the “file” is created using the pipe() system call
— when the file is created, the operating system allocates
kernel space for storing messages
« no messages actually go to a file
— any read() or write() system call operations on a pipe,
actually read and write to the reserved kernel space

Using Unix Pipes

int main(int argc, char®* argv) {
int fd[2]: // 2 ints, one for reading, one for writing
int pid; // will be used for a fork later

pipe(fd); // open 2 pipes: fd[0] - read, fd[1] - write
pid = fork();
if(pid ==0) { // child process - receiver
char buf[80];
read(fd[0], buf, 80);
printf(“%s\n”, buf);
}
else // parent process - sender
write(fd[1], argv[2], 80);

return 0;

}

Named Pipes (FIFO)

* Problem with pipes: only way for two processes to
share a pipe is to share a common ancestry
— no way for two unrelated processes to communicate
¢ Solution: named pipes
* A named pipe is represented as a special file
— file is created using mknod() or mkfifo() system calls
— these files contain no data

Named Pipes (FIFO)

» Using named pipes
— must be opened - like a regular file
« use the open() system call
« this creates space in the kernel for reading and
writing to
— from here it looks just like a regular pipe
« use read() and write() to receive/send messages
— user can close the pipe when finished using it
« use the close() system call

Pipes

* Pipe characteristics
— indirect naming
» multiple processes can read and write a pipe
— asynchronous or synchronous
« determined at creation time of pipe
— bounded buffer
* pipe only has a certain amount of capacity

— message length is variable up to some
maximum

Message Queues

« Conceptually

— a message queue is a repository for named
messages

— these messages can be removed in any order
based on their name

« very similar to a post office
— all messages get sent to the post office
— multiple people can enter the post office
— each person has their own box at the post office

10

Message Queues

¢ Unix System V implementation
— use the msgget() system call to allocate space in the
kernel for a group of messages
* it is possible to create separate queues
— each message sent to a specific group, may contain a
type field
= type field can be used to implement priority, specific processes
to receive message, etc.
* to send a message, use the sendmsg() system call
* maximum number of messages in queue is limitted
— request to receive message may contain a specific type
+ usually retrieve the first message in queue of a specific type
= if no type specified, grab the first message in queue

Message Queues

* Message queue is usually implemented as a list
— so it’s not a queue in the true data structure sense

* Example

° PB e
user space

\ /»/\ kernel space
® g o2e

" type: 0 / e: | " type: 0

msg: hello msg§pot msg: bye
next: @ Xt @ next: NULL

Message Queues

1) P, create a message queue
- initially it is empy

2) P, sends a message (type 0) to the queue
- node added to list

3) P sends a message (type 1) to the queue
- node added to list

4) Py sends a message (type 0) to the queue

- node added to list

5) Pyreceives a message (type 1) from the queue
- queue is searched for first type 1 message
- message is removed from queue

11

Message Queues

* Message queue characteristics
— indirect naming
» multiple processes can read and write to same queue
— asynchronous or synchronous
* determined at creation time of queue
— bounded buffer
« buffer only accepts a maximum number of messages
— fixed size header, variable length messages

« a fixed amount of space is allowed for all the
messages in a queue - can’t exceed this

Ports

* Conceptually
— aport has a certain amount of memory allocated for it

— any message sent to a specific port is put into the
memory for that port

— each port is associated with a single process only
— aport is identified by a single integer number
— messages are sent to specific ports

o G
\ user space

kernel space
kernel delivers message to
the message kernel first

* A process can have multiple ports
— which port a message is delivered to depends
on which one it is intended for
* The memory for each port can be located in
either the kernel or the user space
— more flexible if in user space

— more copying required if in user space
* message gets copied to kernel and then to port

12

Ports

* Sending a message
— you send the message to a specific port
— send(port, msg, size);

* Receiving a message
— indicate which port to receive a message from
— recv(port, buf, size);

* More details on this is left to a networking
course

Ports

* Port characteristics
— direct naming
* a message gets delivered to a specific process
« the process associated with the port
— asynchronous
¢ assume message sent once given to OS
* can simulate synchronous
— bounded buffer
« port only has a certain amount of capacity
— message length is variable up to some
maximum

13

