Memory Allocation

CS 537 - Introduction to Operating Systems

Memory

* What is memory?
— huge linear array of storage
* How is memory divided?
— kernel space and user space
* Who manages memory?
— OS assigns memory to processes

— processes manage the memory they’ve been
assigned

Allocating Memory

¢ Memory is requested and granted in contiguous
blocks
— think of memory as one huge array of bytes
— malloc library call
= used to allocate and free memory
+ finds sufficient contiguous memory
« reserves that memory
= returns the address of the first byte of the memory
— free library call
= give address of the first byte of memory to free
* memory becomes available for reallocation
— both malloc and free are implemented using the brk
system call

Allocating Memory

» Example of allocation
char* ptr = malloc(4096); // char* is address of a single byte

| v

0 [4096+ Memory M
[8192 -

pir

Fragmentation

* Segments of memory can become unusable
— FRAGMENTATION
— result of allocation scheme
* Two types of fragmentation
— external fragmentation
* memory remains unallocated
« variable allocation sizes
— internal fragmentation
* memory is allocated but unused
« fixed allocation sizes

External Fragmentation

* Imagine calling a series of malloc and free
char* first = malloc(100);
char* second = malloc(100):
char* third = malloc(100);
char* fourth = malloc(100);
free(second);
free(fourth);
char* problem = malloc(200);

HINETENE
45

0 100 200 300

gy =

/TR

e 250 free bytes of memory, only 150 contiguous
— unable to satisfy final malloc request

0

Internal Fragmentation

* Imagine calling a series of malloc
— assume allocation unit is 100 bytes

char* first = malloc(90);
char* second = malloc(120);
char* third = malloc(10);
char* problem = malloc(50);

TR SR BRI
0

100 200 300 400

* All of memory has been allocated but only a
fraction of it is used (220 bytes)

— unable to handle final memory request

Internal vs. External Fragmentation

« Externally fragmented memory can be compacted
— lots of issues with compaction
— more on this later
» Fixed size allocation may lead to internal
fragmentation, but less overhead
— example
* 8192 byte area of free memory
« request for 8190 bytes
« if exact size allocated - 2 bytes left to keep track of
« if fixed size of 8192 used - 0 bytes to keep track of

Tracking Memory

* Need to keep track of available memory
— contiguous block of free mem is called a “hole”
— contiguous block of allocated mem is a “chunk”
* Keep a doubly linked list of free space
— build the pointers directly into the holes

. .
AJ(‘J\\ 2 — s %% 1024

nextplr prev ptr

Free List

* Info for each hole usually has 5 entries
— next and previous pointers
— size of hole (on both ends of hole)
— abit indicating if it is free or allocated (on both ends)
« this bit is usually the highest order bit of the size
¢ A chunk also holds information
— size and free/allocated bit (again, one on each end)

« Examples 400 o[150 256 [T 12z
830
100
0| 150 1] 144
hole chunk
Free List

* Prefer holes to be as large as possible
— large hole can satisfy a small request
« the opposite is not true
— less overhead in tracking memory

— fewer holes so faster search for available
memory

Deallocating Memory

* When memory is returned to system

— place memory back in list

« set next and previous pointers and change allocation
bit to 0 (not allocated)

— now check allocation bit of memory directly
above
« if 0, merge the two
— then check the allocation bit of memory directly
beneath

« if 0, merge the two

Allocation Algorithms

* Best Fit

— pick smallest hole that will satisfy the request
¢ Comments

— have to search entire list every time

— tends to leave lots of small holes

« external fragmentation

Allocation Algorithms

* Worst fit

— pick the largest hole to satisfy request
* Comments

— have to search entire list

— still leads to fragmentation issues

— usually worse than best fit

Allocation Algorithms

¢ First fit

— pick the first hole large enough to satisfy the
request

* Comments

— much faster than best or worst fit

— has fragmentation issues similar to best fit
* Next fit

— exactly like first fit except start search from
where last search left off

— usually faster than first fit

Multiple Free Lists

* Problem with all previous methods is
external fragmentation

* Allocate fixed size holes
— keep multiple lists of different size holes for
different size requests
— take hole from a list that most closely matches
size of request

— leads to internal fragmentation
¢ ~50% of memory in the common case

Multiple Free Lists

* Common solution

— start out with single large hole
 one entry in one list
* hole size is usually a power of 2

— upon a request for memory, keep dividing hole

by 2 until appropriate size memory is reached
= every time a division occurs, a new hole is added to
a different free list

Multiple Free Lists
char* ptr = malloc(100 K)

eInitially, only one entry in first list (1 M)
«In the end, one entry in each list except 1 M

list (1 M)

list (512 K) \

list (256 K) E @/

list (128 K) D D‘

" allocate this hole

Buddy System

* Each hole in a free list has a buddy
— if a hole and its buddy are combined, they
create a new hole
« new hole is twice as big
« new hole is aligned on proper boundary
* Example
— a hole is of size 4
« starting location of each hole: 0, 4, 8, 12, 16, 20, ...
— buddies are the following: (0,4), (8, 12), ...
— if buddies are combined, get holes of size 8
« starting location of these holes: 0, 8, 16, ...

Buddy System

* When allocating memory

— if list is empty, go up one level, take a hole and
break it in 2

« these 2 new holes are buddies
— now give one of these holes to the user
* When freeing memory

— if chunk just returned and its buddy are in the
free list, merge them and move the new hole up
one level

Buddy System

o If all holes in a free list are powers of 2 in size,
buddy system is very easy to implement

¢ A holes buddy is the exclusive OR of the hole size
and starting address of hole

« Example
hole starting address new hole address
0 0@4:41)
4 4@4=0_ |

8 8@4=12 8
12 1204=8

Slab Allocation

Yet one more method of allocating memory
— used by Linux in conjunction with Buddy system
* Motivation

— many allocations occur repeatedly!

* user program requests a new node in linked list
+ OS requests a new process descriptor

— instead of searching free list for new memory, keep a
cache of recently deallocated memory
+ call these allocation, deallocation units objects

— on a new request, see if there is memory in the cache to
allocate

+ much faster than searching through a free list

Cache Descriptor

* Describes what is being cached
— points to a slab descriptor

» Each cache only contains memory objects
of a specific size

* All cache descriptors are stored in a linked
list

Slab Descriptor

 Contains pointers to the actual memory
objects
— some of them will be free, some will be in use
— always keeps a pointer to the next free object
* All slab descriptors for a specific object are
stored in a linked list
— cache descriptor points to the first element

— each slab descriptor has a pointer to the next
element

Object Descriptor

Contains one of two things
1. if the object is free
— pointer to the next free element in the slab
2. if the object is allocated
— the data stored in the object
All of the object descriptors are stored in
contiguous space in memory

— similar to allocation scheme examined earlier

— the cache and slab descriptors are probably
not allocated contiguously in memory

Slab Allocator

cache
Descriptor

cache
. e e
Descriptor

slab

Descriptor

Compaction

* To deal with internal fragmentation
— use paging or segmentation
— more on this later

¢ To deal with external fragmentation

— can do compaction

Compaction

» Simple concept
— move all allocated memory locations to one end
— combine all holes on the other end to form one
large hole
* Major problems
— tremendous overhead to copy all data

— must find and change all pointer values
« this can be very difficult

Compaction

1000 1000
2500 1) Determine how far each chunk gets moved 2500

chunkl =0
3000 chunk2 =500

chunk3 = 1000

2) Adjust pointers

pl =3500- 0= 3500

p2 = 3100 - 500 =2600

p3 =5200 - 1000 = 4200
4500 ¥4 3)MoveData 00
5000
6000

