Monitors

CS 537 - Introduction to Operating Systems

Issues with Semaphores

Semaphores are useful and powerful
BUT, they require programmer to think of
every timing issue

— easy to miss something

— difficult to debug
Examples
Example | Example 2 Example 3
mutex.P() mutex. V() mutex.P()

critical section critical section part of critical section
mutex.P() mutex.V()

remaining critical section

Monitors

Let the compiler handle the details!
Monitors are a high level language
construct for dealing with synchronization
— similar to classes in Java

— a monitor has fields and methods
Programmer only has to say what to protect
Compiler actually does the protection

— compiler will use semaphores to do protection

Monitors

* Basic structure of monitor
monitor monitor-name {
1/ fields
1/ methods
}
* Only methods inside monitor can access
fields

¢ At most ONE thread can be active inside
monitor at any one time

Condition Variables

¢ Monitors utilize condition variables

* Two methods associated with each
condition variable
— wait: blocks a thread, places itself in a waiting
queue for this condition variable, and allows
another thread to enter the monitor
— signal: pulls a single thread off the waiting
queue of this condition variable
« note: only one thread removed from wait queue
« if no threads waiting, no effect

Example

monitor Foo {
int maxValue, value;
condition atMin, atMax;
Foo(int maxValue) {
this,maxValue = maxValue;
value = 0;
}
void increment() {
if(value == maxValue)
aMax.wail;
value++;
atMin signal;
}
void decrement() {
if(value == 0)
aMin.wait;
value-—-;
atMax signal;

Example

* Only the methods increment and decrement
can access maxValue, value, atMin, atMax

* If one thread is executing in increment, then
no other thread can be executing in either
increment OR decrement
— remember, only one thread allowed into a

monitor at any one time

* Notice signal is always called at the end of

increment and decrement

— if no one waiting on the condition, no effect

Monitor Analogy

workbench 1

)
%;:E

Monitor Analogy

 Imagine a single room

* Only one person allowed in room at a time
— person locks the door to the room on entry
— that person is doing some work in the room

* Anyone else wanting to do work in the
room has to wait outside until door is
unlocked

* If person in room decides to rest (but isn’t
finished with work), unlocks the door and
goes into a side room (wait)

Monitor Analogy

* Multiple people can be in the side room
— they are all taking a nap

* When person finishes working and leaves
room, first check side room for anyone
napping
— if someone is napping, wake them up (signal)
— otherwise, unlock the door and leave the room

More on signal and wait

* Assume P is running and Q is waiting

* Remember, only one thread inside the
monitor at a time

« If P calls signal, there are two possible Q
thread continuation strategies
— signal-and-hold: P signals Q and then P blocks
until Q leaves the monitor

— signal-and-continue: P signals Q and then Q
waits until P leaves the monitor

Signal-and-Continue

* Good points
— P can exit the monitor and move on to other
work
— P can wakeup multiple threads before exiting
the monitor
» Bad points
— Q has to wait until P leaves the monitor so the
condition it was waiting for may not be true
anymore

Signal-and-Continue

Example
public void decrement() {
if(value == 0)
atMin.wait;
value--;
atMax.signal;
anotherCondition.signal;
}
Notice that the thread currently in monitor gets to wakeup
two threads and then exit
If the thread waiting on anotherCondition wins the monitor
lock and then changes value to maxValue, there will be a
problem when the thread waiting on atMax wakes up
— why?

Signal-and-Hold

Good points

— when Q wakes up it is guaranteed to have its
condition still be true

— P can wakeup multiple threads before exiting
the monitor

Bad points

— P must wait immediately so it can’t exit the
monitor and do other work

Revisit above example

Signal-and-Leave

Allow P to continue after calling signal
Force P to exit immediately
Good points

— when Q wakes up it is guaranteed to have its
condition still be true

— P can exit the monitor and move on to other
work

Bad points
— P can only wakeup a single thread

Good compromise

Implementing Signal and Wait

Programmer Code Compiler Code (psuedocode)
monitor M { monitor M {
condition ¢} sem_{ mutex = 13
sen tes=0;
intce=0;
foo() { foo() {
- mutex.down();
c.wail; P
ce++; mutexup(); es.down(); ce--;
} N
mutex.up():
}
bar() { bar() {
o mutex.down();
c.signal; .
} if(cc > 0) { es.up(); }
else mutex.up():
} }

Implementing Signal and Wait

 Previous example is for a signal-and-leave
system

« If a signal-and-hold technique is used,
things are a bit different
— keep a high priority count
« thread that issues the signal is a high priority
— on a wait call, check if any high priority threads
waiting
— on a signal, make the current thread wait in a
high priority queue

Signal-and-Hold

monitor M {
sem {mutex = 1;
sem_tes=0; intee=0;
sem_ths =0; inthe =0;
foo() {
mutex.down();
o+
if(he > 0) { hs.up(); }
else { mutex.up(); }
es.down(); cc--;

if(the > 0) { hs.up();)
else { mutex.up();)
)
bar() {
mutex.down();

if(cc>0) [hes+ csup(); hsdown(; he-;)

if(he > 0) { hs.up();)
else { mutex.up();)
1
i

Alternative to Signal

* Major problem with signal is that it only
wakes up one process
— usually not much control over which process
this is
* What if you want all the threads waiting on
a condition to become runnable?

— use notify()

notify()

* notify() moves all threads currently blocked
on some condition to the runnable state
— only after a signal() is received
— then all the threads compete to get the CPU

» Caution: good possibility the condition
waiting for may no longer be true when a
process gets the CPU

— should do all wait calls inside of a while loop

Monitor Review

Monitor

| e —

entry wait queue

y condition wait queue
(waiting for lock)

(waiting to be notified)

DS o

runnable queue
(competing for CPU) CPU

notify() Review

Monitor

condition wait queue
(waiting to be notified)

entry wait queue
(waiting for lock)

S signal()
J

runnable queue
(competing for CPU) CPU

notify() Review

Monitor

- L
entry wait queue condition wait queue
(waiting for lock) |

| (waiting to be notified)

notify

N\

= = —|

runnable queue
(competing for CPU) CPU

