Paging with Multiprogramming

CS 537 - Introduction to Operating Systems

Global Allocation

* Processes compete for pages against one
another

* Allows a process to use as many pages as it
needs
— if one is using 10 pages and another a 100,
memory is allocated efficiently
— if a processes changes from using 10 to using
100 pages, its new state can be met

Global Allocation

¢ Problem if one page is a memory “hog”

— imagine database program that is just searching
and another process that is only using a few
pages

— the database program will “steal” all of the
pages even though it’s not really using them

e A process may perform differently from one
run to the next because of external factors

— first time it runs with “good” processes

— next time it runs with a “hog”

Local Allocation

Assign a certain number of pages to each
process to use for paging

Can base this number on needs of process
— alarger process can be allocated more frames
This prevents memory “hog” problem
What if a process doesn’t need all of its
frames?

— another process that could use them won’t get
them

Virtual Time

Give each process its own clock

Last reference of a page is based on the
clock of the process that is using the page
— not on a global time

Using this, a process’s pages are not
punished because the process is context
switched out

Virtual Time

Keep the clock for a process in its PCB
start(p)
— PCBJp].lastStart = now

stop(p)
— PCB[p].virtualTime += now - PCB.lastStart

Working Set

¢ Minimum number of pages a process needs
in memory to execute satisfactorily

/fil working set in memory

page rate

of frames

* W.(p) = set of pages process p touched
during the last T seconds of virtual time

Thrashing

 If a processes working set is not in memory,
the process will thrash

¢ Process spends most of its time reading in
pages from disk

Virtually no useful work will get done

Better to kill a process than to let it thrash

Working Set Size

* How many pages make up the working set
of a process?
— measure each process carefully
* requires running the process before hand
« requires process behave the same way
— ask the user
* requires a user to be truthful
— monitor the process
 Page fault frequency monitoring
« clock algorithm

Page Fault Frequency

» Give each process initial number of pages
* If process page faults are above a set
threshold
— give the process a new frame

* If process page faults are below a set
threshold
— take away a frame from the process

e If all of the process have too high of a page
fault rate
— kill some process

Clock Algorithm

» Use clock algorithm discussed before for
doing replacement
— modified slightly

* If the “hand” is moving too fast, kill some
process

e If the “hand” is moving slowly enough, start
some process

Clock Algorithm

e Some terminology
— VT(p) = virtual time of a process
— LR[f] = time of last reference to a frame
* based on virtual time of owner process
— owner[f] = process that owns a frame
— PT[f] = page table entry for a frame

Clock Algorithm

= (f+1) % memSize; // move hand forward «—
if(full revolution of hand w/o finding a page)
deactivate some process
R = PT[f].refBit;
PT[f].refBit = 0;
p = owner[f];

second chance

yes

no

yes
1
replace 0
fr:li)mef 47 clean(f)

Clock Algorithm

* Allows a process’s frame ownership to
grow

¢ A page is only taken away from a process if
the process hasn’t used it for a long time

