Networked File System

CS 537 - Introduction to Operating Systems

Remote File Systems

* Often useful to allow many users access to
the same file system
— shared files everyone uses

— can have a much larger storage space than a
single computer

— easier to protect against failure of the system

Remote File Systems

* Two major issues with remote file systems
— performance can be awful
« have to traverse a network to get data
— recovery
« what if the server crashes in the middle of a write
« what if the client crashes
— consistency
« what if two people are simultaneously changing file




Networked File System (NFS)

* Major Goals
— machine and OS independent
— simple crash recovery
— transparent access
« don’t need to re-write current programs to use NFS
— support Unix semantics
« this doesn’t happen perfectly
— reasonable performance
* 80% of a local drive

Terminology

* Server

— contains all of the files and directories

— responsible for maintaining the file system
* Client

— requester of directory and file information

— does the actual reading and writing of files
* file handle

— a way to access a file without giving the file
name
— similar to a file descriptor on a local file system

Remote Procedure Call (RPC)

Method of getting one machine to run code

on behalf of another machine

» Package up remote procedure name and
parameters and send across the network

* Receiving machine runs procedure,
packages up results, and sends them back

* Very similar to a function call in a high

level programming language




RPC

* Initial implementations of RPC used the
UDP communication protocol

— if no response in a certain amount of time, just
re-send the request

* Today both UDP and TCP are used

— implemented on top of the IP protocol

NFS Protocol

* NFS is implemented using RPC

— aclient issues a request to the server by placing
all necessary information to complete the
request in the parameters

— RPC calls are synchronous
« client blocks until the server sends a response back
* This looks exactly like a procedure call on
a local system

— exactly what a user is used to seeing when they
make a system call

NFS Protocol

* NFS protocol is stateless

— each procedure call by a client contains all the
necessary information to complete an operation

— server doesn’t need to maintain any information
about what is at the clients site

— server also doesn’t keep track of any past
requests

* This makes crash recovery very simple




Crash Recovery

 If a server crashes
— just reboot the server

— client just keeps sending its request until the
server is brought back on-line

— remember, RPC is synchronous
* If a client crashes
— no recovery is necessary at all

— when client comes back up it just starts running
program again

Crash Recovery

* In a system that maintains state
— both client and server must be able to detect a
crash by the other
— if client crashes
« server discards all changes made by client
— if server crashes
« client must rebuild the servers state

NFS Protocol

* There are a set of standard NFS procedures
* Here are a few of the major ones

— lookup(dirfh, name) returns (fh, attr)

— create(dirfh, name, attr) returns (newfh, attr)

— remove(dirfh, name) returns (status)

— read(fh, offset, count) returns (attr, data)

— write(fh, offset, count, data) returns (attr)
* Notice that read and write require the offset

— this prevents server from maintaining a file ptr
« a file ptr would be client state




File Handle

Consists of the following

— <inode #, inode generation #, file system id>
NEFS reuses inodes after a file has been
deleted

May be possible to hand out a file handle
and then have the file deleted

When original file handle comes back to

server, it needs to know it is for an old,
deleted file

Virtual File System

Major goal of NFS is system independence

Concept of the Virtual File System (VES)

— this is an interface that the client side must
implement

— if implemented properly, the client can then
communicate with the NFS server regardless of
what type of system each is

Can allow different file systems to live on

the same client

Virtual Node (vnode)

An abstraction of a file or directory

— a “virtual inode”

Provides a common interface to a file

This must also be implemented by the client
Allows files on different types of file

systems to accessed with the same system
calls




vnode

* Here is a small sampling of the operations
— open(vnode, flags)
— close(vnode, flags)
— rdwr(vnode, uio, rwflag, flags)
— create(dvnode, name, attr, excl, mode)
— link(vnode, todvnode, toname)

— symlink(dvnode, name, attr, to_name)

VES

Client Server

System Calls System Calls
vnode / VES ’—> vnode / VFS

‘ DOS FS ‘ ‘ ext2 FS ‘ ‘ NFS ‘ ‘ server routines ‘
floppy hard
drive drive

network

Pathname Traversal

* Break name into components and call
lookup for each component

* Requires multiple calls to lookup for a
single pathname
— don’t pass entire path name into lookup because

of mounting issues
— mounting is independent protocol from NFS
« can’t be separated from the architecture

* Seems slow so...use cache of directory

entries




Increasing Performance

Client caches file and directory data in
memory

* Use a larger packet size
— less traffic for large reads or writes

* Fixed some routines to do less memory
copying

* Cache client attributes

— this prevents calls to server to get attributes
— server notifies client if attributes change

Increasing Performance

* Cache directory entries
— allows for fast pathname traversal
* For small executable files
— send the entire file on execution
— versus demand page-in of executable file

— most small executable files touch all pages of
the file

— a form of read-ahead

Hard Issues
* Authentication
— user passes uid and gid on each call

— very large number of uid’s and gid’s on a
distributed system

— NFS uses a yellow pages
« just a big database of users and their rights
* Concurrent Access
— what if two users open a file at the same time?
— could get interleaved writes

« especially if they are large writes
« this is different from Unix semantics




Hard Issues

Open File Semantics
— what if a user opens a file and then deletes it?
— in Unix, just keep the file open and let the user
read and write it
* when the file is closed, the file is deleted
— in NFS, rename the file
« this sort of deletes the old version of it
— when file is closed, client kernel is responsible
for deleting it

— if system crashes in between, end up with a
garbage file in the file system

Major Problem with NFS

Write performance is slow

While clients may buffer writes, a write to
the server is synchronous

— no DMA to hide the latency of a write

This is necessary to maintain statelessness
of the server and client

Could add non-volatile RAM to the server

— expensive




