Introduction to Processes

CS 537 - Intoduction to Operating Systems

Definition

* A process is a program in execution
e It is not the program itself
— a program is just text

* Only one process can run on a processor at
once

Process Description

¢ A process is completely defined by
— the CPU registers
* program counter, stack pointer, control, general purpose, etc.
— memory regions

« user and kernel stacks
« code
* heap

* To start and stop a program, all of the above must

be saved or restored
— CPU registers must be explicitly saved/restored
— memory regions are implicitly saved/restored

Memory Regions of a Process

* Every process has 3 main regions

— text area

« stores the actual program code

« static in size (usually)
— stack area

« stores local data

— function parameters, local variables, return address

— data area (heap)

* stores program data not on the stack

« grows dynamically per user requests

Memory Regions of a Process

Process Address Space

Oxffff
stack region
unused region
data region
text region
0x0000

Note: the stack usually grows down while the data region
grows upward — the area in between is free

User vs. Kernel Stack

» Each process gets its own user stack
— resides in user space
— manipulated by the process itself

* In Linux, each process gets its own kernel
stack

— resides in kernel space
— manipulated by the operating system

— used by the OS to handle system calls and

interrupts that occur while the process is
running

User Stack

Function: printAvg
Return: check call inst
Param: avg

Local: none

Function: check
Return: main call inst
Param: grade

Local: hi, low, avg

Method: main
Return: halt

Param: command line
Local: grade[5], num

Kernel Stack

Function: calcSector
Return: read call inst
Param: avg

Local: sector

Function: read
Return: user program
Param: block

Local: sector

User program counter
User stack pointer

Process Descriptor

* OS data structure that holds all necessary
information for a process
— process state
— CPU registers
— memory regions
— pointers for lists (queues)
- etc.

Process Descriptor

pointer ‘ state

process ID number

program counter

registers

memory regions

list of open files

Process Descriptor

 Pointer

— used to maintain queues that are linked lists
» State

— current state the process is in (i.e. running)
* Process ID Number

— identifies the current process
* Program Counter

— needed to restart a process from where it was
interrupted

Process Descriptor

* Registers

— completely define state of process on a CPU
* Memory Limits

— define the range of legal addresses for a process
* List of Open Files

— pretty self explanatory

Process States

* 5 generic states for processes
— new
— ready
— running
— waiting
— terminated (zombie)
¢ Many OS’s combine ready and running into
runnable state

Process Queues

« Every process belongs to some queue
— implemented as linked list
— use the pointer field in the process descriptor
« Ready queue
— list of jobs that are ready to run
* Waiting queues
— any job that is not ready to run is waiting on some event
* /0, semaphores, communication, etc.
— each of these events gets its own queue
¢ Queue management and ordering can be important
— more on this later

Process Queues

Ready Queue
head
tail

Printer Queue
head
tail
Disk Queue
head
tail

semaphore A

head
tail

Creating Processes

 Parent process creates a child proces
— results in a tree

» Execution options
— parent and child execute concurrently
— parent waits for child to terminate

* Address space options
— child gets its own memory
— child gets a subset of parents memory

Creating Processes in Unix

* fork() system call
— creates exact copy of parent
— only thing different is return address
« child gets 0
* parent gets child ID
— child may be a heavyweight process
* has its own address space
* runs concurrently with parent
— child may be a lightweight process
« shares address space with parent (and siblings)

« still has its own execution context and runs
concurrently with parent

Creating Processes in Unix

* exec() system call starts new program
— needed to get child to do something new
— remember, child is exact copy of parent

* wait() system call forces parent to suspend
until child completes

* exit() system call terminates a process

— places it into zombie state

Creating Processes in Unix

void main() {
int pid:
pid = fork();
if(pid == 0) { // child process - start a new program
execlp(“/bin/ls”, “/home/mattmcc/”, NULL);
}
else { /1 parent process - wait for child
wait(NULLY);
exit(0);

Destroying a Process

Multiple ways for a process to get destroyed
— process issues and exif() call
— parent process issues a kill() call
— process receives a terminate signal
+ did something illegal
¢ On death:
— reclaim all of process’s memory regions
— make process unrunnable
— put the process in the zombie state

— However, do not remove its process descriptor from the
list of processes

Zombie State

* Why keep process descriptor around?
— parent may be waiting for child to terminate
* via the wait() system call
— parent needs to get the exit code of the child
« this information is stored in the descriptor

— if descriptor was destroyed immediately, this
information could not be gotten

— after getting this information, the process
descriptor can be removed

* no more remnants of the process

init Process

* This is one of the first processes spawned
by the OS

— is an ancestor to all other processes
* Runs in the background and does clean-up

— looks for zombie’s whose parents have not
issued a wait()
¢ removes them from the system
— looks for processes whose parents have died
¢ adopts them as its own

