Reliability and Recovery

CS 537 - Introduction to Operating Systems

System Failures

* All systems fail
* Fatal failures
— disk bearings fail
— controllers go bad
— fire burns down entire system
* Limited failures
— single block on disk goes bad
— power goes out

Fatal Failures

* In a fatal failure, all data on system is lost
* To recover data another copy must be kept
— tape drive
— floppy drive
— second hard drive
* Most systems are backed up to tape on a
regular basis

— to save space, only backup files that have
changed since the last backup




Limited Failures

* Limited failures may destroy some data but
not all
— single bad block may ruin one file but not all

* Destroyed data may be restored in several
ways
— from backup
— using error correcting codes (ECC)
— redo operations that lead to existing system

ECC

* 100’s of millions of bits in memory

* 100’s of billions of bits on a disk

* Virtually impossible to make a memory or
disk without bad bits

* Must find a way to deal with these
inevitable bad bits

ECC

* When a given set of bits are stored, an ECC
code is calculated
— this code is stored with the data

* When data is read, the ECC is recalculated
and compared with that stored

* If they don’t match, there is an error in the
data

* These calculations and checks are usually
performed by hardware
— memory controller or disk controller




ECC

* Single error correcting, double error
detecting
— using the ECC code, it is possible to find and
correct a single bad bit
— itis possible to find up to two bad bits and
inform the user of the problem
* With more complicated math, you can
correct more bits and determine more errors

ECC

¢ do math here

Block Forwarding

* Set aside a number of disk blocks

— under normal operation, these blocks are not
used at all

» If a bad block is detected, the controller will
re-map that block to one of the reserved
blocks

* All future references to the original block
are now forwarded to the new block




Block Forwarding

remapping

o 1 2 3.4,5 6 7 8.,9,10 11 4 9
\ / 12 13 14 15
bad blocks Reserved blocks

«All references to blocks 4 and 9 are now forwarded to blocks 12 and 13

Block Forwarding

This indirection keeps things working
This indirection can hurt performance
Disk scheduling algorithms don’t work as
well any more

— OS doesn’t know about the remapping

— using the elevator algorithm could now jump all
over the disk

Transaction

A transaction is a group of operations that
are to happen atomically

— transactions should be synchronized with
respect to one another

— either all of the operation happens or none of it
This can be difficult to do in the event of a
system failure




Logging

» Keep a separate on disk log that tracks all
operations

* Mark the beginning of transaction in log

Mark the end of transaction in log
* On reboot from failure, check the log

— any transactions that were started and not
finished are undone
— any transactions that were completed are redone
« this has to be done because of caching in memory

Logging
Transaction 1 Transaction 2

Log SR s
begin block 27 block 41
undo 27,3
redo 27,4
undo 32,19 /\@/\ 23
redo 32,23
commit block 32 block 52
begin
undo 41,7
redo41,4

+——— system crash

Logging

* To recover from the above system crash
— redo transaction 1
« scan the log and perform the redo operations
— undo the effects of transaction 2
« scan the log in reverse and perform the undo
operatlons
* To make this work, the log should only be
written after a transaction has completed




Shadow Blocks

¢ Never modify a data block directly
* Make a copy of the data block (a shadow block)
and modify that
¢ When finished modifying data, make the parent
point to the shadow block instead of the original
¢ Of course, this requires making a copy of the
parent to be modified
» This chain continues up to the root
— when root is written the transaction is committed
— original blocks are then freed

Shadow Blocks

* In the event of a crash
— if the transaction did not complete
« garbage collect the shadow copies
— if the transaction did complete
 garbage collect the original copies
» Garbage collection is easy
— scan the data tree
— any block not in the tree is garbage

Shadow Blocks

*Modify the data in block 6 from Y to Z

Once this is written, the
/ transaction is complete




