Page Replacement

CS 537 - Introduction to Operating Systems

Paging Revisitted

 If a page is not in physical memory
— find the page on disk
— find a free frame
— bring the page into memory

e What if there is no free frame in memory?

Page Replacement

* Basic idea
— if there is a free page in memory, use it
— if not, select a victim frame
— write the victim out to disk
— read the desired page into the now free frame
— update page tables
— restart the process

Page Replacement

* Main objective of a good replacement
algorithm is to achieve a low page fault rate
— insure that heavily used pages stay in memory
— the replaced page should not be needed for

some time

» Secondary objective is to reduce latency of
a page fault
— efficient code

— replace pages that do not need to be written out

Reference String

* Reference string is the sequence of pages
being referenced

« If user has the following sequence of
addresses
— 123, 215, 600, 1234, 76, 96

* If the page size is 100, then the reference
string is
-1,2,6,12,0,0

First-In, First-Out (FIFO)

* The oldest page in physical memory is the
one selected for replacement
e Very simple to implement
— keep a list
* victims are chosen from the tail
* new pages in are placed at the head

FIFO

«Consider the following reference string: 0,2, 1,6,4,0,1,0,3,1,2, 1

X XX XXX X XX
Compulsory Misses

I P P P P
2 0| 0 0 0
1]

eFault Rate =9/ 12 =0.75

FIFO Issues

¢ Poor replacement policy

 Evicts the oldest page in the system

— usually a heavily used variable should be
around for a long time

— FIFO replaces the oldest page - perhaps the one
with the heavily used variable

* FIFO does not consider page usage

Optimal Page Replacement

Often called Balady’s Min
* Basic idea

— replace the page that will not be referenced for
the longest time

» This gives the lowest possible fault rate
¢ Impossible to implement

* Does provide a good measure for other
techniques

Optimal Page Replacement

«Consider the following reference string: 0,2, 1,6,4,0,1,0,3,1,2, 1

X XX X|X X
Compulsory Misses

eFault Rate = 6/ 12 = 0.50
«With the above reference string, this is the best we can hope to do

Least Recently Used (LRU)

* Basic idea
— replace the page in memory that has not been
accessed for the longest time
* Optimal policy looking back in time
— as opposed to forward in time

— fortunately, programs tend to follow similar
behavior

LRU

«Consider the following reference string: 0,2, 1,6,4,0,1,0,3, 1,2, 1

X XX XXX X X
Compulsory Misses

*Fault Rate = 8 / 12 = 0.67

LRU Issues

* How to keep track of last page access?
— requires special hardware support
¢ 2 major solutions
— counters
¢ hardware clock “ticks” on every memory reference
« the page referenced is marked with this “time”
« the page with the smallest “time” value is replaced
— stack
« keep a stack of references
¢ on every reference to a page, move it to top of stack
 page at bottom of stack is next one to be replaced

LRU Issues

* Both techniques just listed require
additional hardware
— remember, memory reference are Very common

— impractical to invoke software on every
memory reference

e LRU is not used very often

* Instead, we will try to approximate LRU

Replacement Hardware Support

* Most system will simply provide a
reference bit in PT for each page

* On a reference to a page, this bit is set to 1
¢ This bit can be cleared by the OS

e This simple hardware has lead to a variety
of algorithms to approximate LRU

Sampled LRU

» Keep a reference byte for each page
e At set time intervals, take an interrupt and
get the OS involved
— OS reads the reference bit for each page
— reference bit is stuffed into the beginning byte
for page
— all the reference bits are then cleared
* On page fault, replace the page with the
smallest reference byte

Sampled LRU

Page Table Reference Bytes

01100110
10001001
10000000
01010101
00001101

ﬂ Interrupt

10110011

[01000100 |
| 01000000 [«—— page to replace
10101010 on next page fault

10000110

— = o o= |®

AW =S

AW =S
clole|lole|m

Clock Algorithm (Second Chance)

On page fault, search through pages

If a page’s reference bit is set to 1
— set its reference bit to zero and skip it (give it a
second chance)

» If a page’s reference bit is set to 0
— select this page for replacement

* Always start the search from where the last
search left off

Clock Algorithm

R R
e
Pointer to first
R

/ page to check
1
v, 1]

R
T [
7\

’ * suser refs P, - not currently paged
R R estart at Pg

0 echeck P, P, P and set their

7 reference bits to zero (give

% them a second chance)
R check P; and notice its ref bit

1 is0
. «Select P; for replacement

«Set pointer to P, for next search

Dirty Pages

 If a page has been written to, it is dirty

» Before a dirty page can be replaced it must
be written to disk

* A clean page does not need to be written to
disk
— the copy on disk is already up-to-date

e We would rather replace an old, clean page
than and old, dirty page

Modified Clock Algorithm

e Very similar to Clock Algorithm

¢ Instead of 2 states (ref’d and not ref’d) we
will have 4 states
— (0, 0) - not referenced clean
— (0, 1) - not referenced dirty
— (1, 0) - referenced but clean
— (1, 1) - referenced and dirty

* Order of preference for replacement goes in
the order listed above

Modified Clock Algorithm

Add a second bit to PT - dirty bit
Hardware sets this bit on write to a page
OS can clear this bit

Now just do clock algorithm and look for
best page to replace

This method may require multiple passes
through the list

Page Buffering

It is expensive to wait for a dirty page to be
written out
To get process started quickly, always keep a pool
of free frames (buffers)
On a page fault

— select a page to replace

— write new page into a frame in the free pool

— mark page table

— restart the process

— now write the dirty page out to disk

— place frame holding replaced page in the free pool

