Synchronization

CS 537 - Introduction to Operating Systems

What is Synchronization?

» Recall that there is no guarantee about the
ordering of instructions between processes
(or threads)

» Synchronization is providing explicit
control about the ordering of operations

Machine Level Instructions

Single high level language (C, Java, etc.)
are often broken down into multiple
machine instructions

» Example

Id rl, [count]

count ++; ===> addrl, 1
st [count], rl

* Interrupt or context switch can occur
between any of the above instructions

Most high level instructions are not atomic

Atomocity

» Everything happens at once
e Machine instructions are atomic
—Id r1, [count]

— above instruction can not be broken up by
interrupt

 High level instructions are not atomic
— count++;
— this is actually 3 machine level instructions
— an interrupt can occur in the “middle” of instr.

Producer-Consumer Revisitted

* Let us consider a small section of code

Producer Thread Consumer Thread
bufferfin] = objProduce; objConsume = buffer[out]:
count++; count--;

¢ Remember that count++ (count--) is actually 3 instructions
¢ One possible interleavening of producer and consumer

prod 1d r1, [count]
cons 1d r2, [count]
prod addrl, 1
cons subr2, 1
prod st [count], r1
cons st [count], r2

— for above ordering, value of count is 2

¢ Depending on ordering, could be 2, 3, or 4

Race Condition

* Previous example is an example of a “Race
Condition”
— two threads “race” to place a value in memory
— no way to know which one will “win”

* Very bad bug

— difficult to duplicate because ordering may be
different from one run to another

— without consistent output, hard to find bugs

— producer-consumer example may run fine as
long as count stays between 2 and 9

Critical Section

» If multiple threads with access to shared
data that is writeable, then access to the data
by each thread must be controlled

» The piece of controlled data for each thread
is called its critical section

* Banker example
— one account for 2 people (Jane and John Doe)

— 2 different bank tellers

Banking Example

e The Doe’s current balance is $1000 (B = $1000)

* John deposits $100 with teller 1

* Jane deposits $100 with teller 2

» Teller 1 reads current balance (B = $1000)

» Teller 2 reads reads balance (B = $1000)

* Teller 1 adds John’s deposit to balance (B = $1100)
¢ Teller 2 adds Jane’s deposit to balance (B = $1100)
¢ $100 dollars was lost

* Need to control access by tellers to deposits

— one teller can’t read balance while another is doing a
transaction

Banking Example

double balance;

void deposit(double amount) {
enterCritical Section();
balance += amount;
leaveCriticalSection();

}

int main() {
balance = atoi(argv[1]);
createMultipleThreads(); // creates multiple threads that call deposit
waitForThreads(); // wait for threads to finish

return 0;

Banking Example

¢ So what are the enterCriticalSection and
leaveCriticalSection functions

* Two basic requirements for correctly
protecting critical section
— mutual exclusion: only one thread in critical
section at a time

— progress: if no thread in critical section a thread
can enter without waiting

Protection Algorithm 1

int turn; // initialized to zero in main()

void enterCriticalSection(int id) {
while(turn != id)
yield():
}

void leaveCriticalSection(int id) {
turn =1 —id;

}

Protection Algorithm 1

¢ Insures mutual exclusion

* Does NOT guarantee progress
— imagine thread 0’s turn
— thread 0 is not in the critical section
— thread 1 cannot enter critical section
* progress says that it should be able to
— worst case scenario, thread 0 ends without ever
entering (or leaving) critical section

« it will never be thread 1’s turn (thread 1 will never
advance any further)

Protection Algorithm 2

int flag[2]; // initialize both flag[0] and flag[1] to 0 in main()

void enterCriticalSection(int id) {
int other = 1 —id;
flag[id] = true;
while(flag[other] == true)
yield():
}

void leaveCriticalSection(int id) {
flag[id] = false;
}

Protection Algorithm 2

» Again, guarantees mutual exclusion
* Does NOT guarantee progress

— what if thread O sets flag to true and then a
context switch

— thread 1 sets its flag to true and then blocks in
while loop because thread 0’s flag is true

— thread 0 will now also block because thread 1’s
flag is true

Protection Algorithm 3

int turn; // initialize turn to 0 in main()
int flag[2]; // initialize both flag[0] and flag[1] to O in main()

void enterCriticalSection(int id) {
int other = 1 - id;
flag[id] = true;
turn = other; // give the other guy priority (one thread will win)
while ((flag[other] == true) && (turn == other))
yieldO;
}

void leaveCriticaSection(int id) {
flag[id] = false;
)

Protection Algorithm 3

¢ Combination of algorithm 1 and 2

¢ Provides both mutual exclusion and
progress

* Only yeild if BOTH the other thread wants
control (its flag is true) and it is the other
threads turn

¢ Even if both threads “race” to set the shared
turn variable, one of them will win

— if both get to while loop at same time, one will
go and the other will yield

Semaphores

* Previous algorithms do not scale well to
more than 2 processes

¢ Another solution - SEMAPHORES!

— very simple concept

Semaphores

* Each semaphore has a value (S)

* Each semaphore has two methods
— decrement value (P)
— increment value (V)

e The P method only returns if S > 0 upon
entry to P method

e If S <0 upon entry to P, thread blocks until
S>0

Semaphores

* Example

int S; //initialize semaphore to 1 in main()
void P() {
while(S <0);
S
}
void V() {
S++;

)

Semaphores

* For a semaphore to work, P and V methods
must be atomic

* As written above they are not
— we will show how to make them atomic later

* Notice, P and V do not return any value

— simply by returning, they indicate a thread has
either obtained or given-up “ownership” of the
semaphore

Banking Example Revisited

double balance;

void deposit(double amount) {
PO
balance += amount;
AY¢H

}

int main() {
balance = atoi(argv[1]);
createMultipleThreads(); // creates multiple threads that call deposit
waitForThreads(); // wait for threads to finish

return 0;

Using Semaphores

¢ Guarantees both mutual exclusion and progress
¢ There can be many threads running now and using the
Semaphore for synchronization
— not just 2 threads like previous 3 algorithms
e Problem
— busy wait
« if semaphore not available, the thread “spins™ on the value

« if single processor, no other thread can do useful work -
including thread that “holds™ the semaphore

— solution is for the thread to block instead of spinning

Blocking Semaphores

e If S <0, process adds itself to waiting list

* If process sets S to a value greater than
zero, it selects a process off of the waiting
list (if one exists) and “wakes” it

* Waiting list implemented as a linked list
— use pointer field in PCB

Blocking Semaphores

int S; // initialize S to 1 in main()

void P() {
S
if(S < 0)
block(); // adds the current process to the waiting list and blocks it

}

void V() {
S++;
if(S<0) {
W =remove(); //remove some process from waiting list;
wakeup(W): // make W runnable - doesn’t necessarily run it next
}
}

Types of Semaphores

* A program can have multiple semaphores
— one semaphore for each resource to protect
* memory location is a resource
* Two type of Semaphores
— binary semaphore
« semaphore value never greater than 1
— counting semaphore
« semaphore value can be any integer over 0

¢ used if multiple numbers of a given resource
—when S =0, all the resources are used up

Implementing Semaphores

* Remember, entire P and V operation must
be atomic
» Use hardware support to implement
— disable interrupts
« okay if uniprocessor
* won’t work for multiprocessor system
— use special hardware instructions
e test-and-set

e swap

Test-and-Set Instruction

 Special, atomic memory operation

¢ Check a single memory location
— set a register equal to current value of location
— then set the location equal to some set value

* Very powerful primitive operation

Test-and-Set Instruction

* Assume memory location is either O or 1
— return value of 1 means no one currently
“holds” this memory location
— return value of 0 means another thread
currently “has” the memory location
— either way, calling thread sets the location to 0
« perfectly legal to set it to zero if it already is zero
— calling thread then examines the return value to
determine if it can enter the critical section
* Operation is atomic - no interrupt during
execution of instruction

Test-and-Set Example

int S; // initialize to some value
int lock; // initialized to 1

void P() {
while(test and set(lock) !=1);
S—;
if(S <0) {
add current thread to waiting list;
lock = 1;
}
else { lock=1:}
}

void V() {
while(test_and_set(lock) !=1);
if(S<0){
wakeup some process waiting on S
}
S4+;
lock = 13

Swap Instruction

¢ Very similar to test-and-set

— swap returns the value currently stored in a memory
location

— sets the location to a value specified by the user
« this is main difference from test-and-set
¢ Used in much the same way
— Example of instruction
* swap(regl, memS);

 after instruction, memS will have original value of reg/ and
regl will have original value of memS

¢ Thread checks register for specific value before
proceeding

10

