Virtual Memory

CS 537 - Introduction to Operating Systems

Multiprogramming

* Modern systems keep more than one
program in memory at a time

 Often, all these programs together require
more memory than what is available

* What to do?
— use a part of disk and make it look like memory
— this is called virtual memory

Disk vs. Memory

* Memory characteristics
— fast - typically 100 ns per access
— small - hundreds of megabytes
— random access of any byte
 Disk characteristics
— very slow - several milliseconds per access
— large - tens of gigabytes
— random access of any block (512 bytes)

Virtual Memory

 Basic concept
— keep frequently used process data in physical
memory
— keep the rest of a processes address space on
disk
— if a piece of infrequently used data is needed,
bring it in from disk
* Before any data can be used, it must be in
physical memory

Virtual Memory
SN swap space file system
PO
P,
P3

Physical Memory

virtual memory

Overlays

¢ User controls what info is on disk, and what
is in memory
* To access info kept on disk
— save some portion of current memory to disk
— bring in desired info to memory
* Very difficult to implement
* Becomes very system dependant
— what if more memory becomes available?
— what if less is available?

Overlays

iy

Pt Z

Physical Memory

Paging

This is the way it done today
User thinks virtual memory is one large
array of real memory
Let special hardware and the OS keep up
this illusion

Basic idea

— user enters address from virtual space

« usually 32 or 64 bits (232 or 264 addressable bytes)
— hardware and OS map this virtual address to
physical address

Paging

Break physical memory into frames
Break virtual memory into pages
Page size must be multiple of frame size
— for simplicity, we’ll assume the same size
When an address is accessed
— find out which page it is
— if not in memory, bring it in
— now grab the data

Memory Map

* Two solutions to almost every problem in
computer science
— indirection
— caching
* The memory map is a form of indirection
* Call this memory map the page table

Paging

| — Transfer

of Pages

e

Memory Map

Disk

Physical Memory

Virtual Memory

Page Table

* Keep a record of every page in virtual
memory

* Record actual location of page in this table
— frame in memory

* Also record some other information in table
— valid or invalid (in memory or not)

— protection bits (read/write/executable)

Page Table Entry

e Assume 32 bit addressing
 Entry in table will be 32 bits plus a few
extra
— 32 bits are address in memory
— extra bits are valid/invalid and protection bits
« If entry is valid, the address is the starting
location of the page in main memory
¢ Index of entry is the page number

Page Table

«Assume the page size is 100

Location of start of page (disk or memory) X WV

0 1000 o1
1 300 of1|1
3 2 100 o|1{o
ZE* 1500 o1
;%)"4 400 0/0|0
5 900 of 1|1
6 2000 olofo

Calculating Physical Address

» User supplies a virtual address
— high order bits are the page number
— low order bits are the offset into the page

* Go to appropriate index in page table

» Examine valid bit
— if valid, grab starting address of page from table
— if not, generate a page fault, bring it into memory, set
page table entry, grab starting address
* OS uses another table to find location on disk
— now combine the page table entry and offset to
calculate the true physical address

Calculating Physical Address

physical address

virtual address p=VA/size

Idrl, x 0= VA % size

grab page
address

Calculating Physical Address

page number offset

user instruction: strl,x ———» ‘ 5 ‘ 33 ‘

scheck index 5 in page table:
- itis valid and writeable
- base = 900
enow calculate physical address:
PA = base + offset = 900 + 33 =933

page number offset

user instruction: strl,y ——> 2 ‘ 75 ‘

echeck index 2 in page table:
- it is not valid
- invoke page fault handler and load page into memory
- assume following is now true: base = 1400
*now calculate physical address:
PA = base + offset = 1400 + 75 = 1475

Virtual Address

* Make all pages a power of 2 in size

— and make them a multiple of 512 (disk blocks)
¢ A virtual address consists of 32 bits

— 64 bits in some systems
¢ Assume a page size of 4K

— need 12 bits for the offset (212 = 4K)

— that leaves 20 bits for the page number

— our system can hold 1M (2%0) of 4K pages
* 4GB

Virtual Address

* Given the following virtual address:

page number offset
‘ 000000000000001 1001 1 ‘ 000000011010 ‘

page number =51
offset in page = 26 bytes
* How many pages would there be with
* 16 K pages
* 1 K pages

Locality of Reference

* Important concept in computer science

* spatial locality
— if an address x is accessed, high probability that
address x+1 will also be referenced
* temporal locality

— if an address x is accessed at time t, high
probability it will be accessed again in t+3
where 0 is small

Page Size

* Proper page size depends on the program
reference behavior

* Too small a page size
— too much overhead
— does not consider locality of reference

* Too large a page size

— waste memory with data that will never be used
« holding space that another process could use

— assumes too much locality of reference

