Virtual Memory - Part 1T

CS 537 - Introduction to Operating Systems

Page Table Size

* Where does page table live?
— virtual memory?
— or physical memory?
* How big is page table?
— 32 bit addressing, 4K page, 4 byte table entry
« 4MB
— with 64 bit addressing, this number is huge

Page Table Size

« If page table stored in physical memory,
pretty substantial overhead
¢ Solution
— track frames instead of pages
— OR, put the page table in virtual memory
¢ At some point, something must exist in
physical memory or nothing can be found

— need some structure in physical memory that
keeps track of where the page table is




Inverted Page Table

 Instead of a page table, keep a frame table

— one entry for each frame in the system

— an entry contains the page number it is mapping
 Table size is now proportional to physical

memory

— page size =4 KB

— total memory size = 128 MB

— table entry = 3 bytes

— table size = 228 /212 =216 = 64 KB

— less than 1% of memory is needed for the table

Inverted Page Table
Physical Address
page # 0] +

page # address

Inverted Page Table

Inverted Page Table

* Major flaw with inverted page table
— must search entire table to find page
— can’t just index in like regular page table
« Still need to keep around a structure for all

of the pages to indicate where they are at on
disk




Multilevel Paging

* In physical memory, keep a mini page table
* The entries in this page table refer to the
physical locations of the real page table
» Consider a system with a 4 MB page table
and 4 KB pages
— number of pages to hold page table is
¢« 222/212=210= 1K
— if each entry in mini table entry is 4 bytes
* page table in physical memory is 4 KB

Multilevel Paging Adressing

¢ Address is now broken up into 3 parts
— outer page index
— inner page index
— offset

outer index inner index offset

10 bits 10 bits 12 bits

¢ Still need 12 bits for index

— that still leaves 20 bits for indirection

Multilevel Paging Example

Virtual Address
P, P, o

e—0 —»

*This is a two-level page table
*Could also have 3 or 4 levels of paging




Effective Access Times

Doing lots more references to memory
Effective memory access

— average time for some random access
For the two level scheme above

— assume t; ... = 100 ns (time per memory access)
—ter=3 * tpem =300 ns

We have just made our average access three
times as long

— even worse for more levels of indirection

Reducing t

Memory accesses occur very frequently
— They must be fast
Recall that we have 2 tricks
— indirection and caching
We used indirection to save space
We will use caching to save performance

TLB

Need hardware to make paging fast
Translation Look-aside Buffer (TLB)

Hardware device that caches page table
entries

TLB can be manipulated by the operating
system

— special instructions




TLB

Page Number Page Location X W V

* Table is searched in a fully-associatively manner
— all page numbers are checked for match at same time

* If page match is found and page is valid
— just combine the offset to the page location

* Otherwise, generate a page fault and have OS
search for the page

TLB

» If page is found in TLB
— TLB hit
* If page is not found in TLB
— TLB miss
* TLB hit rates are typically about 90%

— locality of reference

TLB Example

Virtual Address

page#  page address
TLB hit Physical Address
+
10 ns
page table
TLB miss

250 ns




Effective Access Time

¢ Assumptions

- tmemHi
— tmemmiss = 300 ns (memory access time on miss)
—P,;; =0.90 (TLB hit percentage)

» Calculating effective access time

. = 100 ns (memory access time on hit)

— Lo = Prit ™ tempic + (1-Prio) * tyemmiss
— teg=0.90 * 100 + 0.10 * 300 = 120 ns

* Average time is 20% longer than best case
— if hit rates are high, TLB works great

Important Observations

* OS does not get involved at all if page is
cached in the TLB

« If page not in cache, OS does get involved

* Access time increases drastically for a TLB
miss
— this is partially due to extra memory references

— partially due to extra instructions the OS must
run

TLB Fault Handler
¢ OnaTLB miss:

1. trap to operating system
save registers and process state
check if page in memory
ifitis, gotostep 5
ifit is not, go to step 4
do a page fault
make the appropriate entry in the TLB
restore process registers and process state
7. re-execute the line of code that generated the fault

e All of the software steps above take 10’s
of microseconds

e The page fault could take 10’s of
milliseconds
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Page Fault Handler

On a page fault
1. find the offending page on disk
2. select a frame to read the page into
3. write the page currently in the frame to disk
« this may or may not be necessary (more on this later)
4. read the page on disk into the frame
5. modify the page table to reflect change

Notice the possibility for two disk ops
— one write, one read

— may be able to avoid one of these

Effective Access Time

Assumptions

— tpemuic = 100 ns

= LnemMiss = 29 ms = 25,000,000 ns
-P,,=0.99

Effective access time

— tr=0.99 * 100 + 0.10 * 25,000,000

— t = 2,500,099 = 2.5 ms

This access time would be completely
unacceptable to performance

Effective Access Time

Some simple math

= (1-P ) * 8

miss) ™ tmembtit T Prniss ™ tnemiss

= Priss = (tegr = tnemtti) / (temiss = tmemttic)

For an effective access of 120 ns

~ P, = (120 - 100) / (25,000,000 - 100)
—P,,.= 0.0000008

That means 1 miss per 1,250,000 accesses!

Obviously, it is crucial that the page hit
rates be very high




Multiple Processes

* There is usually a separate page table for
each process
* When a process is swapped in, so is its
page table
— it’s part of the process’s state
* 2 options when dealing with the TLB
— flush it
« can be expensive
— consider part of process state
* more data to save and restore

Page Sharing

* Another nice feature of paging is the ability
of processes to share pages

* Map different pages in different processes
to the same physical frame
— shared data, shared code, etc.

« If read only pages, can still be considered
separate memory for each process

Copy-on-Write

* Clever trick to help with performance and still
implement separate memory / process
— mark a shared page as read only
— if any process tries to write it, generates a fault
— OS can recognize page as being shared

— OS then copies the page to a new frame and updates
page tables and TLB if necessary

— OS then returns control to writing process which is now
allowed to write

¢ Can greatly improve performance

— consider the fork() system call
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Issues with Paging

Notice that process is restarted from the
instruction that caused the exception
¢ Consider an architecture that allows the state of a
machine to change during the instruction

— autoincrement or autodecrement

+ MOV (R2)+, -(R3)
— what happens if we increment R2 and then try to write
to R3 and take a page fault

— now R2 is different and restarting the instruction will
give incorrect results
» Either don’t allow these types of instructions or
provide a way to deal with it




