pthreads

CS 537 — Introduction to Operating Systems

What are pthreads?

+ Posix 1003.1c defines a thread interface
— pthreads
— defines how threads should be created,
managed, and destroyed
+ Unix provides a pthreads library
— APl to create and manage threads

—you don’t need to worry about the
implementation details
« this is a good thing

Creating Threads

» Prototype:

— int pthread_create(pthread_t *tid, const pthread_attr_t *tattr,
void*(*start_routine)(void *), void *arg);

« tid: an unsigned long integer that indicates a threads id
« tattr. attributes of the thread — usually NULL
« start_routine: the name of the function the thread starts executing
= arg: the argument to be passed to the start routine — only one
— after this function gets executed, a new thread has been created
and is executing the function indicated by start_routine

Waiting for a Thread

* Prototype:

— int pthread_join(thread_t tid, void **status);
« tid: identification of the thread to wait for
« status: the exit status of the terminating thread — can be NULL

— the thread that calls this function blocks its own execution until

the thread indicated by tid terminates its execution

« finishes the function it started with or
« issues a pthread_exit() command — more on this in a minute

Example

#include <stdio.h>
#include <pthread.h>

void printMsg(char* msg) {
printf(“%s\n”, msg);
}

int main(int argc, char** argv) {
pthread_t thrdID;

printf(“creating a new thread\n”);
pthread_create(&thrdID, NULL, (void*)printMsg, argv[1]);
printf(“created thread %d\n”. thrdID);
pthread_join(thrdID, NULL);

return 0;
}
Example
thrd 0
g thrd 1
create_thread() start of printMsg()

end of printMsg()

end of program

Note: thrd 0 is the function that contains main() — only one main() per program

Exiting a Thread

» pthreads exist in user space and are seen by the
kernel as a single process
— if one issues and exit() system call, all the threads are
terminated by the OS
— if the main() function exits, all of the other threads are
terminated
+ To have a thread exit, use pthread_exit()

+ Prototype:
— void pthread_exit(void *status);

« status: the exit status of the thread — passed to the status variable in
the pthread_join() function of a thread waiting for this one

Example Revisited

#include <stdio.h>
#include <pthread.h>

void printMsg(char* msg) {
int status = 0;
printf(“%s\n”, msg);
pthread_exit(&status);

}

int main(int argc, char** argv) {
pthread_t thrdID;
int* status = (int*)malloc(sizeof(int));

printf(“creating a new thread\n”);

pthread_create(&thrdID, NULL, (void*)printMsg, argv[1]);
printf(“created thread %d\n". thrdID);

pthread_join(thrdID, &status);

printf(“Thread %d exited with status %d\n”, thrdID, *status);

return 0;

Synchronizing Threads

+ Three basic synchronization primitives
1. mutex locks
2. condition variables
3. semaphores
* Mutexes and condition variables will
handle most of the cases you need in
this class
— but feel free to use semaphores if you like

Mutex Locks

» A Mutex lock is created like a normal variable
— pthread_mutex_p mutex;

» Mutexes must be initialized before being used
— a mutex can only be initialized once
— prototype:

« int pthread_mutex_init(pthread_mutex_t *mp, const
pthread_mutexattr_t *mattr);

— mp: a pointer to the mutex lock to be initialized
— mattr: attributes of the mutex — usually NULL

Locking a Mutex

* To insure mutual exclusion to a critical section, a
thread should lock a mutex
— when locking function is called, it does not return until
the current thread owns the lock
— if the mutex is already locked, calling thread blocks
— if multiple threads try to gain lock at the same time,
the return order is based on priority of the threads
« higher priorities return first

« no guarantees about ordering between same priority threads
— prototype:

« int pthread_mutex_lock(pthread_mutex_t *mp);
— mp: mutex to lock

Unlocking a Mutex

* When a thread is finished within the critical
section, it needs to release the mutex
— calling the unlock function releases the lock

—then, any threads waiting for the lock compete
to get it

— very important to remember to release mutex

— prototype:

« int pthread_mutex_unlock(pthread_mutex_t *mp);
— mp: mutex to unlock

Example

#include <stdio.h> void consumer(char” buf) {
#include <pthread.h> for(i;) {

while(count == 0);
#define MAX SIZE 5 pthread mutex lock(bufLock);
pthread_mutex_t bufLock; useChar(buf[count-1]);
int count; count--;

pthread_mutex_unlock(bufLock);
void producer(char* buf) { }
for(;;) { }
whilg(count == MAX_SIZE);

int main() {
hr mutex_lock(bufLock);
pihread_mutex_lock(bufLock); char buffer[MAX SIZE];
buf[count] = getChar();
pthread_t p;
count++;
count=0;

pthread_mutex_unlock(bufLock);
}
}

pthread_mutex_init(&bufLock);

consume(&buffer);
return 0;

Condition Variables (CV)

* Notice in the previous example a spin-lock was
used wait for a condition to be true
— the buffer to be full or empty
— spin-locks require CPU time to run
« waste of cycles
» Condition variables allow a thread to block until
a specific condition becomes true
— recall that a blocked process cannot be run
« doesn't waste CPU cycles
— blocked thread goes to wait queue for condition
* When the condition becomes true, some other
thread signals the blocked thread(s)

Condition Variables (CV)

» A CVis created like a normal variable
— pthread_cond_t condition;

» CVs must be initialized before being used
— a CV can only be initialized once

— prototype:
« int pthread_cond_init(pthread_cond_t *cv, const
pthread_condattr_t *cattr);
— cv:a pointer to the conditon variable to be initialized
— cattr: attributes of the condition variable — usually NULL

pthread_create(&p, NULL, (void*)producer, &buffer);

Blocking on CV

« A wait call is used to block a thread on a CV
— puts the thread on a wait queue until it gets signaled that
the condition is true
« even after signal, condition may still not be true!
— blocked thread does not compete for CPU
— the wait call should occur under the protection of a mutex
« this mutex is automatically released by the wait call
« the mutex is automatically reclaimed on return from wait call
* prototype:

— int pthread_cond_wait(pthread_cond_t *cv,pthread_mutex_t *mutex);
« cv: condition variable to block on
« mutex: the mutex to release while waiting

Signaling a Condition

» A signal call is used to “wake up” a single thread
waiting on a condition
— multiple threads may be waiting and there is no
guarantee as to which one wakes up first
— thread to wake up does not actually wake until the
lock indicated by the wait call becomes available
— condition thread was waiting for may not be true when
the thread actually gets to run again
« should always do a wait call inside of a while loop
— if no waiters on a condition, signaling has no effect
— prototype:
« int pthread_cond_signal(pthread_cond_t *cv);
— cv: condition variable to signal on

#include <stdio.h> void consumer(char* buf) {
#include <pthread.h> for(;;) {
pthread_mutex_lock(lock);

#define MAX_SIZE 5
pthread_mutex_t lock;
pthread_cond_t notFull, notEmpty;
int count;

void producer(char* buf) {

while(count == 0)
pthread_cond_wait(notEmpty, lock);

useChar(buf[count-1]);

count--;

pthread_cond_signal(notFull);

pthread mutex unlock(lock);

for(;;) { }
pthreads_mutex_lock(lock); }
while(count == MAX_SIZE)

" int main() {
hi Full, lock);
pthread_cond_wait(notFull, lock); char buffer]MAX_SIZE];
buf[count] = getChar(); .
count++; pthread_t p;
! count = 0;

pthread_cond_signal(notEmpty);

pthread_mutex_unlock(lock); pthread mutex init(&bufLock);

pthread_cond_init(¬Full);
pthread_cond_init(¬Empty);
pthread_create(&p, NULL, (void*)producer, &buffer);
consume(&buffer);

return 0;

More on Signaling Threads

» The previous example only wakes a single
thread

— not much control over which thread this is

Perhaps all threads waiting on a condition need
to be woken up

— can do a broadcast of a signal

— very similar to a regular signal in every other respect
+ Prototype:

— int pthread_cond_broadcast(pthread_cond_t *cv);
= cv:condition variable to signal all waiters on

Semaphores

» pthreads allows the specific creation of
semaphores
— can do increments and decrements of semaphore
value
— semaphore can be initialized to any value
— thread blocks if semaphore value is less than or equal
to zero when a decrement is attempted

— as soon as semaphore value is greater than zero, one
of the blocked threads wakes up and continues
« no guarantees as to which thread this might be

Creating Semaphores

» Semaphores are created like other variables
— sem_t semaphore;
» Semaphores must be initialized
— Prototype:
« int sem_init(sem_t *sem, int pshared, unsigned int value);
— sem: the semaphore value to initialize

— pshared: share semaphore across processes — usually 0
— value: the initial value of the semaphore

Decrementing a Semaphore

* Prototype:
— int sem_wait(sem_t *sem);
« sem: semaphore to try and decrement
« If the semaphore value is greater than 0, the
sem_wait call return immediately
— otherwise it blocks the calling thread until the value
becomes greater than 0

Incrementing a Semaphore

Prototype:
— int sem_post(sem_t *sem);
« sem: the semaphore to imcrement

* Increments the value of the semaphore by 1

— if any threads are blocked on the semaphore, they will
be unblocked

» Be careful

— doing a post to a semaphore always raises its value —
even if it shouldn’t!

#include <stdio.h> void consumer(char* buf) {
#include <semaphore.h> int out = 0;
for(;;) {
#define MAX_SIZE 5 sem_wait(&full);
sem_t empty, full; useChar(buf[out]);
out = (out + 1) % MAX_SIZE;
void producer(char* buf) { sem_post(&empty);
intin=0; }

for(;;) { }
sem_wait(&empty);
buf[in] = getChar();
m =[(‘]n +g1) o MRX?SIZE; char buffer[MAX_SIZE];
sem_post(&full); pihread 1 p;
' sem_init(&empty, 0, MAX_SIZE);
} sem_init(&full, 0, 0);
} pthread_create(&p, NULL, (void*)producer, &buffer);
consume(&buffer);
return 0;

int main() {

Parting Notes

» Very important to get all the ordering right
—one simple mistake can lead to problems
* Nno progress
« mutual exclusion violation
» Comparing primitives
— Using mutual exclusion with CV’s is faster
than using semaphores
— Sometimes semaphores are intuitively simpler

