
Sequence analysis

Figbird: a probabilistic method for filling gaps in genome

assemblies

Sumit Tarafder1,2, Mazharul Islam1,2, Swakkhar Shatabda 2 and Atif Rahman 1,*

1Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh

and 2Department of Computer Science and Engineering, United International University, Dhaka 1212, Bangladesh

*To whom correspondence should be addressed.

Associate Editor: Can Alkan

Received on November 30, 2021; revised on June 12, 2022; editorial decision on June 13, 2022; accepted on June 17, 2022

Abstract

Motivation: Advances in sequencing technologies have led to the sequencing of genomes of a multitude of organ-
isms. However, draft genomes of many of these organisms contain a large number of gaps due to the repeats in
genomes, low sequencing coverage and limitations in sequencing technologies. Although there exists several tools
for filling gaps, many of these do not utilize all information relevant to gap filling.

Results: Here, we present a probabilistic method for filling gaps in draft genome assemblies using second-generation
reads based on a generative model for sequencing that takes into account information on insert sizes and sequencing
errors. Our method is based on the expectation-maximization algorithm unlike the graph-based methods adopted in
the literature. Experiments on real biological datasets show that this novel approach can fill up large portions of gaps
with small number of errors and misassemblies compared to other state-of-the-art gap-filling tools.

Availability and implementation: The method is implemented using Cþþ in a software named ‘Filling Gaps by
Iterative Read Distribution (Figbird)’, which is available at https://github.com/SumitTarafder/Figbird.

Contact: atif@cse.buet.ac.bd

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome sequencing of an organism, i.e. determining the sequence of
nucleotides that make up the entire genome is often a prerequisite
for performing experiments to study that organism and fundamental
to understanding how different organisms relate to each other. With
the advancement of sequencing technologies in the past decade and
a half, the availability of sequencing data has increased drastically
and genomes of many organisms have been sequenced. However,
eukaryotic chromosomes can be hundreds of millions of base pairs
long, and there is no sequencing technology on the market that can
sequence an entire chromosome telomere to telomere. Therefore, in-
stead of sequencing the complete genome, different sequencing tech-
nologies generate millions of smaller fragments called reads. The
whole genome is then reconstructed from these read sequences
through a process known as genome assembly.

The high throughput, low cost and error rates of second-gener-
ation technologies such as Illumina (Meyer and Kircher, 2010) have
led to its use in a large number of sequencing projects, and many as-
sembly tools such as ABySS (Simpson et al., 2009), Velvet (Zerbino
and Birney, 2008), Allpaths-LG (Butler et al., 2008), SPAdes
(Prjibelski et al., 2020), etc. have been developed to sequence
genomes using this technology. However, due to the short lengths of
second-generation reads, assembly is performed in multiple steps.

The first step of the assembly pipeline constitutes of stitching the
read sequences into contiguous sequences called contigs and then in
the next step, read pairs (paired-end or mate pair) or information
from other technologies are used to orient and organize the contigs
into scaffolds. Despite the development in methodologies for gen-
ome assembly, the draft assemblies constructed with these tools still
contain thousands of intervening gaps within the assembled scaf-
folds due to repetitive regions in genomes and regions with low
sequencing coverage. Filling these gaps with minimal introduction
of error is a crucial step in genome assembly pipelines as an error-
free complete genome can lead to better downstream analysis such
as genotyping variants without errors, complete annotation of genes
(Chaisson et al., 2015), identification of effector and coregulated
genes (Thomma et al., 2016), and accurate statistical analysis
(Domanska et al., 2018).

To address this issue, a number of tools have been developed for
gap filling using short reads. Many of the genome assemblers, such
as ABySS and Allpaths-LG, include gap-filling modules in their pipe-
line. In addition, stand-alone tools such as GapCloser in the
SOAPdenovo (Luo et al., 2012) package, GapFiller (Boetzer and
Pirovano, 2012), Gap2Seq (Salmela et al., 2016), Sealer (Paulino
et al., 2015), etc. also exist for this purpose. GapCloser constructs a
de Bruijn graph on the set of available reads to perform the local

VC The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 3717

Bioinformatics, 38(15), 2022, 3717–3724

https://doi.org/10.1093/bioinformatics/btac404

Advance Access Publication Date: 22 June 2022

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/15/3717/6613135 by guest on 09 O
ctober 2022

https://orcid.org/0000-0003-0669-072X
https://orcid.org/0000-0003-1805-3971
https://github.com/SumitTarafder/Figbird
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac404#supplementary-data
https://academic.oup.com/


assembly. Although it works well for smaller genomes, it is highly
memory inefficient (Paulino et al., 2015) for larger genomes and
only considers read pairs with insert size <2000 base pairs.
GapFiller, on the other hand, uses read pairs with one end aligned to
the scaffold and the other end partially aligned to gap regions. The
reads are then assembled using a k-mer-based method to fill the
gaps. A major limitation of GapFiller is it uses only read pairs with
one end fully aligned and the other end partially aligned
(Supplementary Note S2.1), and does not utilize read pairs with one
end fully unaligned. Thus a lot of sequence information is not taken
into account during its gap-filling procedure. A recent computation-
al approach for gap filling has been introduced in Salmela et al.
(2016) where the problem is formulated as an exact path length
problem, implemented in pseudo-polynomial time with some opti-
mizations, and packaged in a tool called Gap2Seq. However, their
approach does not scale to large genomes and is unable to fill large
gaps due to the expensive computational approach. Lastly, a re-
source-efficient gap-filling software named Sealer (Paulino et al.,
2015) has been designed to close gaps in scaffolds by navigating de
Bruijn graphs represented by a space-efficient data structure called
Bloom filter and is scalable to large Giga base pair sized genomes. It
uses an assembly utility within the ABySS package, called Konnector
(Vandervalk et al., 2014), as its engine to close intrascaffold gaps.
The Konnector utility takes the flanking sequence pairs along with a
set of reads with a high level of coverage redundancy as inputs and
runs with a range of k-mer lengths to connect the flanking gap
sequences. Sealer ignores size discrepancies between gaps and newly
introduced sequences since gap sizes are often estimated from insert
size distributions, and assemblers do not generally provide confi-
dence intervals for every region of Ns. However, it does not consider
the insert size of paired reads during gap filling.

Almost all of the methods for gap filling use a graph-based for-
mulation of the problem, most commonly de Bruijn graph, and then
try to reconstruct a path through the graph that corresponds to the
gap sequence. But there can be multiple such paths present in the
graph due to repetitive regions or sequencing errors (Zerbino and
Birney, 2008), and only one of those paths corresponds to the true
genomic sequence of the gap. Finding such a correct path can get
complicated either due to the presence of repeats or because of the
memory constraint due to the nature of the graph built from a large
set of k-mers. Moreover, once the reads to be used for filling a gap
are identified, most of the tools ignore distance information from
the other end of the pair, i.e. insert size, which may help disambigu-
ate among multiple sequences and solve repeat-related issues. So,
searching for the actual gap sequence that can solve the above-stated
problems is still an area to be explored in genome assembly.

Recently, sequencing technologies have gone through a further
revolution and ‘third generation’ single-molecule technologies, such
as Pacific Bio-sciences and Oxford Nanopore have been developed
which can generate read sequences of lengths tens to hundreds of
kilo-base pairs and beyond. Among the long read and/or contig-
based gap closing approaches existing in literature, GMcloser
(Kosugi et al., 2015), PBJelly (English et al., 2012), gapFinisher
(Kammonen et al., 2019), TGS-GapCloser (Xu et al., 2020),
LR_Gapcloser (Xu et al., 2019), PGcloser (Lu et al., 2020), etc. are
worth mentioning which use long reads or alternatively, assembled
contig set from short-read libraries to fill gaps using sequence align-
ment and to determine consensus sequences. Although long reads
lead to substantially better genome assemblies (Frank et al., 2016),
their use in the gap-filling process is still limited due to the high error
rate in these technologies. Both PacBio and Nanopore technologies
have higher error rates than second-generation Illumina technologies
though long reads with low error rates such as PacBio HiFi reads are
now emerging. To mitigate the effect of error-prone data, high
coverage is required to ensure a low error rate in the generated
assemblies. As gap filling is one of the last stages of genome assem-
bly pipeline, any error introduced in this stage will carry over to sub-
sequent genomic analysis and may lead to incorrect results. To this
end, we have chosen comparatively accurate second-generation read
sequences for gap-filling purposes.

In this work, we formulate gap filling as a parameter estimation
problem and develop a probabilistic method for filling gaps in scaf-
folds using second-generation reads. The method is based on a gen-
erative model for sequencing proposed in CGAL (Rahman and
Pachter, 2013) and subsequently used to develop a scaffolding tool
SWALO (Rahman and Pachter, 2021). The model incorporates in-
formation such as distribution of insert size of read pairs, sequencing
errors, etc. and can be used to compute the likelihood of an assem-
bly with respect to a set of read pairs. We use this model to estimate
the length of the gap and to find a sequence for each gap that maxi-
mizes the probability of the reads mapping to that gap region. We
note that gap length estimation in this context is distinct from gap
size estimation between contigs using read pairs with ends mapping
to different contigs for scaffolding purposes (Chapman et al., 2011;
Sahlin et al., 2012). In our case, only one end of the read pairs may
be mapped, and thus the insert sizes of the read pairs may be com-
pletely unknown. So, we use an iterative approach based on the ex-
pectation-maximization (EM) algorithm (Dempster et al., 1977),
which has been used to solve many problems in computational biol-
ogy including motif finding (Bailey and Elkan, 1995) and transcript
abundance estimation from RNA-Seq (Pachter, 2011). Our method
is implemented in a tool called Figbird and an extensive comparison
with other standalone gap fillers is performed on datasets from the
GAGE (Salzberg et al., 2012) project as well as assemblies obtained
from the widely used assembler SPAdes (Prjibelski et al., 2020).
Overall, our probabilistic method performs well consistently on six
different metrics over a variety of real draft assemblies and is able to
reduce the amount of gaps substantially while keeping misassem-
blies and errors low. Although the method is computationally inten-
sive, the execution time is proportional to the total lengths of reads,
the number of EM iterations as well as the number and the lengths
of gaps, and is thus scalable and applicable to large genomes.

2 Materials and methods

In this section, we describe the methods behind Figbird. First, we
present an overview of the method and subsequently discuss the
gap-filling step in detail.

2.1 Overview of Figbird
A high-level overview of our gap-filling method is illustrated in the
block diagram in Figure 1. The method consists of the following two
major phases.

Pre-processing: In this phase, relevant read pairs are identified,
and distributions are learned. At first, paired-end and mate-pair
reads (we will refer to both these types as read pairs) are aligned to

Fig. 1. Overview of Figbird. Figbird takes as input scaffolds containing gaps and sets

of read pairs (paired-end or mate pairs) and aligns the read pairs to the scaffolds

using Bowtie2. The output is then parsed to separate fully mapped as well as to as-

sign one-end unmapped, and one-end partially mapped read pairs to specific gaps.

Insert size and error distributions are then learnt using uniquely and fully mapped

read pairs. In the gap-filling phase, one-end unmapped and partially mapped reads

are used to fill gaps using the EM algorithm for a range of gap lengths. Finally, reads

with probabilities below a threshold are filtered, and consensus sequence is formed

for the gap length with maximum likelihood

3718 S.Tarafder et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/15/3717/6613135 by guest on 09 O
ctober 2022

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac404#supplementary-data


the scaffold set using Bowtie2 (Langmead and Salzberg, 2012).
Then the output of Bowtie2 is parsed to collect fully mapped, one-
end unmapped and one-end partially mapped read pairs necessary
for our method. The details of the read pairs as well as the read pars-
ing criteria are described in Supplementary Note S2.1. Next, the in-
sert size distribution and parameters for our error model are learned
using uniquely and fully mapped read pairs (see Supplementary
Note S2.2 for details).

Gap filling: In the gap-filling phase, read pairs with one-end un-
mapped or partially mapped are locally assembled using a maximum
likelihood approach calculated using a model described in Section
2.2. As we do not know exactly where the unmapped end of the
read pair should be placed within the gap, we use the EM algorithm
(Dempster et al., 1977) to iteratively find the placement of the read
using the learned insert size distribution and the current probability
estimates of the nucleotides in the gap sequence, and re-estimate the
probabilities of the nucleotides using the current placements. The
process is iterated over a range of gap estimates with different
lengths, and the one with the maximum likelihood value is chosen
to fill the gap region. Once the gap length and the corresponding se-
quence are estimated, the distribution of probability of fully mapped
reads learnt from the previous step is used to decide whether the
reads should be considered to fill that particular gap based on a cut-
off value and reads with probability below the cut-off are discarded.
Finally, a consensus is calculated based on the probabilistic place-
ments of the chosen reads in gaps which are regarded as the final
predicted gap sequence.

2.2 Gap filling using the EM algorithm
In the next phase, we fill the gaps using read pairs with one end
mapped and the other end unmapped or partially mapped with a
likelihood-based approach. Given a gap sequence G of length g and
a set of reads R ¼ fr1; r2; . . . ; rNg, the log-likelihood of G is given
by

lðG;RÞ ¼ log
YN
i¼1

pðrijGÞ;

where pðrijGÞ is the probability that ri is generated from G. We are
interested in the gap sequence that maximizes this likelihood. To
calculate this, we use the generative model described in CGAL
(Rahman and Pachter, 2013). However, since one end of the read
pair is mapped to a fixed position, we modify the model and define
the probability of a read as follows:

pðrijGÞ ¼ pFðLÞpEðrijG;LÞ;

where L is the insert size of the read pair, and pF and pE are insert
size and sequence probabilities, respectively.

In this paper, we formulate gap filling as a parameter estimation
problem. Given a gap of length g, we introduce the parameters to be
estimated as

hj;c for 1 � j � g and c 2 fA;C;G;Tg;

where hj;c denotes the probability of nucleotide c at index j of a gap
sequence. The gap filling problem then converts into a parameter
estimation problem where the goal is to find the estimates of hj;c’s
that maximize the likelihood lðhg;c;RÞ.

However, we need to know the insert sizes exactly to estimate
these parameters. Although the insert sizes are known for one-end
partially mapped reads, we do not know these for one-end un-
mapped reads as sequencing experiments do not provide the exact
distance between the two ends. It is worth noting that although we
do not exactly know the insert size values, the read pairs follow an
approximately normal distribution which can be learnt. This obser-
vation can reduce the possible positions of the unmapped end within
a range of minimum and maximum value of insert size for that read
pair as indicated in Figure 2. Here, we use a smoothed and truncated
version of the empirical insert size distribution learnt using the
uniquely mapped reads (Supplementary Note S2.2). To reduce bias

toward small inserts, the user can optionally provide an estimate
of the mean of the insert size distribution, which is set as a limit
on the minimal size of scaffolds used to learn the distribution.
However, the results in this paper are obtained without setting
any limits.

Now, if the insert size of a read pair was exactly known, we
could have placed the read at the correct position within the gap and
used the sequence to adjust the probabilities of the nucleotides
occurring at those gap positions as shown in Figure 3A. On the other
hand, if the gap sequence was known to us beforehand, then we
could have aligned the read to that known sequence and obtained
the most likely placement of the unmapped end as shown in
Figure 3B.

But neither the exact insert sizes nor the sequence of the gap re-
gion are known beforehand, and to solve one of these problems we
need the solution to the other. To solve this set of interlocking prob-
lems, we will use the EM algorithm. The EM algorithm can be
applied to solve those class of problems that have some hidden
observations as well as unknown model parameters. It proceeds by
picking an initial set of model parameters to estimate the hidden
observations with the assumption that the data come from a specific
model. This is called the E-step. Then, using the newly estimated
values of hidden observations, the parameters or initial hypothesis
gets updated. This step is called the M-step. These two steps are iter-
ated until the resulting values converge to a fixed point or the allo-
cated time ends. In our method, the hidden observations are insert
sizes of the read pairs, and the parameters are the probabilities of
each nucleotide occurring at each gap position.

2.2.1 EM formulation

A schematic diagram of our EM approach for gap filling is shown in
Figure 3C. We start with an initial hypothesis that each of the four
bases fA;C;G;Tg is equally probable at each gap position j and ini-
tializes the estimation parameter hj;c with 0.25 for all gap positions
and for all four possibilities of nucleotide c. Then, the E-step and M-
step will be applied iteratively as follows:

E-step: In the E-step, we place the unmapped end of the read ri ¼
c1c2 . . . cl in all possible gap positions based on the set of allowable
insert sizes Li ¼ ½Lmin

i ;Lmax
i �, where Lmin

i and Lmax
i are the minimum

and maximum threshold value of insert size for read ri, respectively,
and calculate the probability that the read is generated from that
position using the current estimated probabilities hg;c. This posterior
probability of read ri having a particular insert size L 2 Li, i.e. that
it starts at s (Figure 2), is given by:

fiðLÞ / pFðLÞ
Yj¼sþl�1;k¼l

j¼s;k¼1

ðhj;ck
ð1� perðkÞÞ þ sj;ck

perðkÞÞ

2
4

3
5;

where l is the length of the read and s is the start position of the
read within the gap corresponding to the insert size L, perðkÞ is
the error probability at read position k and sj;ck

is the probability
of getting nucleotide c at gap index j and read position k due to a
sequencing error, which can be calculated using the following
equation:

Fig. 2. Possible placement of the unmapped end r00i of read ri in different gap

positions

Figbird 3719

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/15/3717/6613135 by guest on 09 O
ctober 2022

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac404#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac404#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac404#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac404#supplementary-data


sj;ck
¼
X5

k¼1

X5

i¼1

hj;ici;ck
;

where c is a 5�5 square matrix containing the probability of
substitution of each of the four nucleotide characters and character
‘N’ into others.

M-step: In this step, we accumulate the probabilities calculated
for all the reads in E-step in an intermediate matrix a with the same
dimensions as h. If s is the starting position of read ri 2 R in the gap
with respect to an insert size L 2 Li, a will be updated according to
the following equation:

aj;c ¼ �þ
XN
i¼1

X
L2Li

fiðLÞ1iðj� sþ 1; cÞ;

where � is a small value added to ensure the probability of characters
do not become zero and 1iðk; cÞ is a variable indicating whether the
k-th character of ri equals c, i.e.

1iðk; cÞ ¼
1 if ri;k ¼ c
0 otherwise

:

�

Finally, the estimation of our parameters h using the intermedi-
ate values in a will be done as following:

hj;c ¼
aj;cP4

i¼1 aj;ci

8j 1 � j � g:

Here, ci denotes each of the four possible nucleotides at position
j. Based on this updated hypothesis, we will continue our E- and M-
steps until there is a convergence, i.e. the placement positions of
reads do not change anymore and thus the hypothesis reaches a
fixed set of values.

A simplified simulation of our EM algorithm is presented in
Figure 3D. Initially, the probabilities of the nucleotides are equal
across all positions as indicated in the top left of the figure. Based on
this set of parameters, we calculate the probabilities of each read

aligning at each gap position in the E-step and accumulate those

probabilities in the M-step to determine an intermediate consensus
with updated nucleotide probabilities. The relative height and fre-
quency of nucleotides at different positions in the figure denote the

corresponding information content and the relative probabilities at
those positions. These two steps then iterate two more times and fi-

nally, at the end of the third iteration, we manage to obtain the true
placements of the unmapped reads in the gap. The final consensus is
constructed based on the final placement of reads using a majority

voting approach, and the gap is filled with the predicted final con-
sensus sequence.

2.3 Selecting the gap length
Once the EM converges for a particular gap length g, we compute
the likelihood of the estimated parameters as follows:

lðhg;c;RÞ ¼ log
YN
i¼1

pðrijhg;cÞ;

where pðrijhg;cÞ is the maximum over all placement probabilities of

ri, i.e.

pðrijhg;cÞ ¼ max
L2Li

fiðLÞ: (1)

However, since the gap length is often not known exactly, we it-

erate over a range of gap lengths and select the gap length that maxi-
mizes the above likelihood, i.e. maxglðhg;c;RÞ. For each gap with
length g in the scaffold file, we compute the likelihood for the range

0.5–2.5 g, and the gap estimate with the maximum likelihood will
be selected as the final gap estimate. We observe that the actual gap
length is within the specified range for most of the gaps. However,

for long gaps, this becomes computationally expensive. So, we use a
heuristic for deciding the range which is described in Supplementary

Note S2.3. It is to be noted that gap length can be negative if the
sequences preceding and succeeding the gap region overlap.

Fig. 3. Formulation of gap filling using the EM algorithm. (A) If the insert sizes are known exactly, the reads can be placed within the gap in the correct positions and the gap

sequence can be inferred. (B) If the sequence of nucleotides in the gap is known, reads can be aligned to the sequence, and their placement and insert sizes can be estimated. (C)

Figbird solves gap filling using the EM algorithm. It starts by initializing each nucleotide with equal probability. In the E-step, current probabilities of nucleotides and insert

size distribution are used to calculate the placement probabilities of each read within the gap. Then in the M-step, the placement probabilities and read sequences are used to

update the probabilities of nucleotides. These two steps are iterated until convergence. (D) A simplified simulation of the EM algorithm for gap filling

3720 S.Tarafder et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/15/3717/6613135 by guest on 09 O
ctober 2022

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac404#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac404#supplementary-data


2.4 Finalizing the gap sequence
At this stage of our pipeline, we will finalize our gap sequence based
on an error model and learnt cut-off value. This step is needed be-
cause every unmapped read parsed during the preprocessing phase
does not truly belong to that gap region due to the fact that one or
both ends of a read pair might be very error prone, and the aligner
sometimes fails to map these reads to the scaffolds and thus they re-
main unmapped. So it is essential not to consider such reads in the
gap-filling process. To prune these reads out, we perform the follow-
ing steps. Firstly, we generate an intermediate consensus sequence C
based on the output of the final M-step of our method for the gap
length corresponding to the highest likelihood. Then each unmapped
read ri will be slid across the allowable consensus positions based on
the insert size, and the error probability of ri placed on consensus
position s will be calculated using the following equation:

pðrijCÞ ¼ max
L2L

eðLÞ:

If 1iðk; CjÞ denotes whether the consensus character at position j,
i.e. Cj matches with rik which is the kth character of read ri, then

eðLÞ ¼
Yj¼sþl�1;k¼l

j¼s;k¼1

1iðk; CjÞð1� perðkÞ � pinðkÞ � pdelðkÞÞ

þð1� 1iðk; CjÞÞðperðkÞcðCj; ri;kÞÞ;

where per, pin and pdel are error, insertion and deletion distributions,
respectively, for different read positions calculated using the parsed
CIGAR information from the SAM alignment output. If the error
probability pðrijCÞ of ri is less than a cut-off error probability, only
then we will consider the read for gap filling, otherwise it will be dis-
carded from consensus consideration. The cut-off probability value
is precalculated using the distribution of probabilities of uniquely
and fully mapped reads. It is the value above which the probabilities
of 80% of such reads lie.

Finally, we place each read above the cut-off threshold value at
their most likely position according to Equation (1) and construct a
final consensus sequence based on a majority voting approach. This
will be our final predicted sequence G for that particular gap.

2.5 Implementation
The method is implemented using Cþþ and is available for down-
load freely at https://github.com/SumitTarafder/Figbird under GNU
General Public License v3.0. In order to reduce the runtime and en-
sure accuracy, we apply a number of heuristics in the implementa-
tion, which are described in Supplementary Note S2.5. We have also
prepared a script to run Figbird iteratively with various libraries in
different modes, which is described in Supplementary Note S2.5.

3 Results

3.1 Experimental data and setup
To assess the performance of Figbird and to compare it with existing
gap-filling tools, we use the GAGE dataset (Salzberg et al., 2012),
which is a standard dataset generated to critically evaluate the gen-
ome assemblers and has been used to assess gap-filling tools
(Salmela et al., 2016). In this experiment, we use the data for two
bacterial species Staphylococcus aureus, Rhodobacter sphaeroides
as well as Homo sapiens Chromosome 14, for which reference
genomes are available. We collect a wide array genome assemblies
for the three datasets generated using various methods as part of the
GAGE project as described in Supplementary Table S1. In addition,
we have used the SPAdes (Prjibelski et al., 2020) assembler v3.15.1
to generate draft scaffolds for the three genomes specified above and
evaluated the performance of the gap-filling tools on them. We per-
form gap filling using Figbird on all the assemblies and evaluate the
results by comparing the filled sequences with the reference
sequences.

As part of the GAGE datasets, second-generation sequencing
reads from two libraries are available for each of these three

datasets. For our experiment, we use both the fragment (paired-
end) as well as the short jump (mate pair) libraries. The details
about the short-read libraries used in this experiment are listed in
Supplementary Table S2. More details about the different assem-
blies and read sets are available at the official GAGE website. For
sequences from the short jump library, we use Quake (Kelley
et al., 2010) corrected versions of the reads for better accuracy
due to its conservative nature of error correction mechanism
(Fujimoto et al., 2014). We run Bowtie2 version 2.2.3 to align
these read pairs to the gapped scaffolds for our experiment and
then fill the gaps using Figbird v0.1.0.

We compare the performance of our tool Figbird with the four
state-of-the-art tools available for filling gaps using short reads
which are, SOAPdenovo’s stand-alone tool GapCloser v1.12-r6
(Luo et al., 2012), GapFiller v1.10 (Boetzer and Pirovano, 2012),
Gap2Seq v1.0 (Salmela et al., 2016) and Sealer (Paulino et al.,
2015). For GapFiller, both BWA (Li and Durbin, 2009) and
Bowtie (Langmead et al., 2009) aligners are used. We also consid-
ered two recent gap-filling tools GAPPadder (Chu et al., 2019) and
GapPredict (Chen et al., 2021), but we were unable to run them on
most assemblies due to runtime errors and long execution time,
respectively.

All experiments are run using 24 cores on a machine with
Intel(R) Xeon(R) CPU E5-2697 v2 @ 2.70 GHz processors. Our
method has been parallelized to allow the filling of individual gaps
on separate threads (discussed in Supplementary Note S2.4). We
used the Unix command ‘time’ to measure the time taken for each of
these tools and used the Python script Memusg to benchmark peak
memory usage. Due to the prohibitive time and memory require-
ments of Gap2seq, the performance metrics for all the assemblies of
Human Chromosome 14 (HC14) except SPAdes have been taken
from the bar plots in (Salmela et al., 2016) using the tool
WebPlotDigitizer.

3.2 Evaluation criteria
As gap filling is one of the last steps in the genome assembly pipe-
line, a wrongly introduced sequence may affect subsequent analysis,
especially if the gap region falls in coding regions of the genome.
Therefore, we focus on errors introduced by gap-filling tools in add-
ition to the amounts of gaps filled by them. We use QUAST v2.3
(Gurevich et al., 2013) to compare the outputs of the tools with the
reference. We then use a Python script provided by Salmela et al.
(2016) for analysis of the results and classification into ‘misassem-
blies’ and other errors. QUAST uses NUCmer (Kurtz et al., 2004) to
find alignments between the gap-filled assembly and the reference
sequence.

To assess the quality of the filled sequence and the robustness
of the methods, we use six different metrics, (i) misassemblies, (ii)
erroneous length, (iii) unaligned length, (iv) NGA50, (v) number
of gaps and (vi) total gap length, which are explained in details in
Supplementary Note S2.6.

3.3 Comparison with gap-filling tools
In this section, we present the performance comparison of Figbird
with four other state-of-the-art gap-filling tools that use short reads
as discussed in Section 3.1. The detailed evaluation results from
QUAST are provided in Supplementary Tables S3–S5. Each table
shows the percentage increase or decrease in the six evaluation met-
rics achieved by the five gap-filling tools along with the original val-
ues before gap filling. For each assembly, these relative percentages
are determined using the differences in evaluated values between ori-
ginal assembly and gap-filled assembly using QUAST. The results
over all the assemblies are presented in the bottom of the tables in
rows named ‘Average’, which is obtained by determining the aver-
age for a particular metric over all the assemblies for each gap-filling
tool. The standard deviations in the percent averages are also shown
in the tables. The overall percent reduction in gap length as well as
percent changes in misassembly and errors for all three datasets are
also shown in Figure 4. We focus on these three metrics as unaligned
length and NGA50 are related to these, while filling a gap partially

Figbird 3721

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/15/3717/6613135 by guest on 09 O
ctober 2022

https://github.com/SumitTarafder/Figbird
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac404#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac404#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac404#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac404#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac404#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac404#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac404#supplementary-data


may lead to an increase in the number of gaps which we believe is
misleading. From the overall results, we observe that Figbird is able
to close considerably high portion of gap regions yet manage to keep
the erroneous length and misassembly low compared to the other
state-of-the-art tools.

For the S.aureus dataset, we observe from the scatter plots in
Figure 4A that none of the other tools have managed to fill more

nucleotides than Figbird while achieving better accuracy in terms of
error or misassembly. There are no points in the scatter plots that
are to the right and below the points representing Figbird i.e. it is
Pareto optimal. We can also see from Supplementary Table S3 that
Figbird has reduced the total misassembly rate by 4%, which is the
best among all other tools, and reduced erroneous length by 20%
thus outperforming the next best tool GapCloser in this respect by

Fig. 4. Scatter plots showing the performance of Figbird compared to other gap-filling tools on (A) S.aureus, (B) R.sphaeroides and (C) HC14 datasets in terms of the average

percentage of misassemblies and erroneous length against the average percentage of nucleotides filled by each tool. The values are computed by determining the percent change

in misassembly and erroneous length, and percent reduction in gap length obtained by each tool for all the de novo draft genome assemblies from GAGE and SPAdes, and then

averaging over the values for all those assemblies

3722 S.Tarafder et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/15/3717/6613135 by guest on 09 O
ctober 2022

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac404#supplementary-data


6%. The only tool which is able fill a higher portion of gaps than
Figbird is Gap2Seq, which is at the expense of higher rate of misas-
sembly and substantially higher amount of erroneous sequences.

In the case of our second bacterial dataset R.Sphaeroides, a simi-
lar trend can be observed from Figure 4B like the previous dataset.
None of the other tools have outperformed Figbird, which has man-
aged to close the second-highest amount of ‘N’s, only behind
Gap2Seq. However, Gap2Seq increases misassembly and erroneous
length by 204% and 8%, respectively, which are substantially
higher than the 2% misassembly and 1% erroneous length increase
by Figbird, as shown in Supplementary Table S4. It is worth high-
lighting that the sequencing error rate for R.sphaeroides dataset is
higher compared to that of S.aureus dataset and the sequencing
reads being more error-prone, mapping tools find it difficult to align
reads properly to the scaffolds (Hunt et al., 2014), and also leads to
errors during gap filling. This shows that Gap2Seq lacks robustness
to sequencing errors and may introduce a large amount of errors,
whereas Figbird still performs in a balanced way without introduc-
ing massive amounts of misassemblies and errors.

Finally, detailed results of QUAST evaluation on the HC14 data-
set are summarized in Supplementary Table S5. Despite the highly
repetitive nature of the HC14 dataset as suggested in Luo et al.
(2012), three of the tools, Figbird, GapCloser and GapFiiler filled
more than 30% nucleotides. From the overall comparison presented
in Figure 4C, it can be observed that Figbird is second to GapCloser
in terms of the amount of gap filled. However, the additional 4%
gap filled by GapCloser comes at the expense of 37% and 6% more
misassemblies and erroneous length, respectively, compared to
Figbird. Moreover, GapCloser fills a smaller amount of gaps while
making more misassemblies and errors than Figbird in the other
datasets. On the other hand, Gap2Seq, which is able to reduce the
gap length by the highest amount in the other two datasets, fills
16% fewer gaps than Figbird despite 22% more misassemblies.

Overall, our EM-based method shows Pareto optimal perform-
ance with respect to amount of gap filled, misassemblies and errone-
ous sequence introduced in all three datasets, i.e. no other tool is
able to fill more nucleotides while making less misassemblies or
errors than Figbird. Figbird has achieved best or near-best perform-
ance score for all the evaluation metrics in every dataset used in
evaluation suggesting the usefulness of our approach in gap filling.
However, it is worth noting that Sealer outperforms Figbird while
filling gaps in assemblies generated by the widely used genome as-
sembler SPAdes.

3.4 Time and memory usage
We have compared the performance of Figbird in terms of run time
and peak memory usage with four other tools mentioned in Section
3.1. The detailed commands and parameters used to run each of

these tools can be found in Supplementary Note S2.7. Table 1 shows
the time and memory usage of the tools on the HC14 dataset. The
comparisons on the other two datasets are summarized in
Supplementary Tables S6 and S7. From Table 1, we can see that
GapCloser and Sealer are the two fastest tools in terms of run time
across all the assemblies while Gap2Seq is the slowest among all.
Figbird and GapFiller-bwa have moderate time requirements. In the
case of memory usage, Gap2seq and Sealer require the highest
amount of memory due to their problem formulation, whereas
GapFiller requires the lowest. The memory requirement of Figbird is
almost similar to that of GapCloser, taking less memory in case of
Allpaths-LG, CABOG, MSR-CA, etc. while taking slightly more
memory in case of Velvet, ABySS, etc. Overall, we find that although
there are gap-filling tools with lower time and memory usage than
Figbird, it falls within the time and memory requirement range of
the state-of-the-art tools. The increased run time can be regarded as
a trade-off with the improved performance. Moreover, the running
time of Figbird scale linearly with the number and lengths of gaps,
and the number of reads (Supplementary Note S2.9) making it ap-
plicable to large datasets unlike some of the other gap-filling tools.
To further scale our method to large genomes, several future direc-
tions for improvement are possible. The majority of the time taken
by Figbird is in predicting the length of the gap. Although we have
implemented an approach to make it scalable (described in
Supplementary Note S2.3), the approach can be redesigned by gain-
ing a preliminary idea about the gap length through graph-based
approaches or gap size estimation methods (Chapman et al., 2011;
Rahman and Pachter, 2021; Sahlin et al., 2012), and then exploring
the range with our likelihood estimation model to identify the cor-
rect gap length. Secondly, as we are placing the unmapped reads in
every possible gap position in each EM iteration, the probable pos-
ition of those reads can be stored to minimize searches in subsequent
iterations.

4 Conclusion

In this paper, we presented a probabilistic method based on the EM
algorithm to fill gaps in genome assemblies using paired-end and
mate-pair reads from second-generation sequencing technology with
relatively low error rate. As gap filling is one of the last stages in
genome assembly pipelines and the comparatively easy regions of
the genome have already been reconstructed by de novo assemblers
in previous stages, only complex regions are left to fill up at this
stage. So, the main objective was to incorporate essential informa-
tion such as insert size distribution, sequencing errors, etc. to cor-
rectly estimate the true lengths of gaps and fill them with the
introduction of a minimal amount of errors making downstream
genome analysis easier. The results from experiments on multiple

Table 1. Gap-closing performance of all the tools on 10 draft genome assemblies of HC14

Assembly Gap-filling software

Time (h) Memory (GB)

GapCloser GapFiller-bwa Sealer Gap2Seqa Figbird GapCloser GapFiller-bwa Sealer Gap2Seqa Figbird

ABySS 0.14 1.7 0.3 55.2 2.2 6.5 0.11 40 22 7.5

ABySS2 0.16 2.9 0.35 155.5 3.5 6.4 0.14 40 17 7.2

Allpaths-LG 24 6.3 0.55 4�103 8 8.2 0.17 40 21 5.5

Bambus2 0.19 13.2 0.31 1�104 17 6.8 0.12 40 25 5.4

CABOG 0.08 4.4 0.45 167 5.4 6.5 0.11 40 14 5.3

MSR-CA 0.4 13.7 0.9 6�103 29 7.6 0.14 40 23 6.1

SGA 0.3 13.1 0.6 14�103 32 6.5 0.11 40 23 8.9

SOAPdenovo 0.25 5.2 0.7 1�104 9 6.8 0.3 40 25 7.1

SPAdes 0.1 0.4 0.5 2.2 1 6.7 0.15 40 33 0.7

Velvet 1.2 41.7 1.1 2�104 38 7.7 0.2 40 27 11.5

aThe performance metric values for Gap2seq on all the assemblies except SPAdes are values taken from bar plots in the corresponding paper (Salmela et al.,

2016) using WebPlotDigitizer: Version 4.5 as the tool could not be evaluated due to the high run time and memory constraints.

Figbird 3723

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/15/3717/6613135 by guest on 09 O
ctober 2022

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac404#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac404#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac404#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac404#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac404#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac404#supplementary-data


real datasets show that our method achieves a balanced performance
across a variety of assembly pipelines managing to close a larger
number of gaps improving the overall contiguity while still manag-
ing to keep the amount of misassembly and the length of erroneously
introduced sequence low compared to existing tools. Specifically, it
demonstrates Pareto optimal performance in terms of the portion of
gap filled and the numbers of misassemblies and errors introduced
overall, although there are gap filling tools better suited to specific
genome assemblers.

We believe our method for gap sequence prediction in draft
genome assemblies can be adapted to other applications. For ex-
ample, long reads with high error rates are often corrected with
the help of short reads through hybrid error correction techniques
such as Ratatosk (Holley et al., 2021). Error models for short and
long reads may be used to find the most probable paths corre-
sponding to long reads in de Bruijn graphs constructed from short
reads. This may improve error correction in long reads generated
from near-identical repeats. Furthermore, there are still a number
of medically relevant genes that are challenging to analyze due to
their presence in complex repetitive and hard-to-assess regions
(Wagner et al., 2022). An EM-based approach may also improve
the accuracy of such variant calls in repeat-rich regions and resolve
short tandem repeats more accurately in human and other
genomes. Finally, another interesting future direction is to explore
whether this approach to gap filling can be extended to third-gen-
eration sequencing data to accurately fill gaps that cannot be done
using only second-generation reads.

Acknowledgements

The authors thank Lior Pachter for providing feedback and computational

resources to perform some of the experiments. The authors also thank the

reviewers for their comments.

Data availability

The data underlying this article are from the GAGE (Genome Assembly Gold-

standard Evaluations) study (Salzberg et al., 2012). The datasets were derived

from sources in the public domain: https://gage.cbcb.umd.edu/.

Funding

This research work is partially supported by the Institute of Advanced

Research (IAR) of United International University (UIU), Dhaka, Bangladesh

under the Research Grant UIU-RG-162002.

Conflict of Interest: The authors declare that they do not have any conflict of

interest.

References

Bailey,T.L. and Elkan,C. (1995) Unsupervised learning of multiple motifs in

biopolymers using expectation maximization. Machine Learn., 21, 51–80.

Boetzer,M. and Pirovano,W. (2012) Toward almost closed genomes with

GapFiller. Genome Biol., 13, R56.

Butler,J. et al. (2008) ALLPATHS: de novo assembly of whole-genome shot-

gun microreads. Genome Res., 18, 810–820.

Chaisson,M.J. et al. (2015) Genetic variation and the de novo assembly of

human genomes. Nat. Rev. Genet., 16, 627–640.

Chapman,J.A. et al. (2011) Meraculous: de novo genome assembly with short

paired-end reads. PLoS One, 6, e23501.

Chen,E. et al. (2021) GapPredict—a language model for resolving gaps in draft

genome assemblies. IEEE/ACM Trans. Comput. Biol. Bioinform., 18,

2802–2808.

Chu, C. et al. (2019) GAPPadder: a sensitive approach for closing gaps on

draft genomes with short sequence reads. BMC Genomics, 20, 1–10.

Dempster, A. P. et al. (1977) Maximum likelihood from incomplete data via

the EM algorithm. J. R. Stat. Soc. B (Methodol.), 39, 1–38.

Domanska, D. et al. (2018) Mind the gaps: overlooking inaccessible regions con-

founds statistical testing in genome analysis. BMC Bioinformatics, 19, 1–9.

English,A.C. et al. (2012) Mind the gap: upgrading genomes with Pacific

Biosciences RS long-read sequencing technology. PLoS One, 7, e47768.

Frank,J.A. et al. (2016) Improved metagenome assemblies and taxonomic bin-

ning using long-read circular consensus sequence data. Sci. Rep., 6, 1–10.

Fujimoto, M. S. et al. (2014) Effects of error-correction of heterozygous

next-generation sequencing data. BMC Bioinformatics, 15, 1–8.

Gurevich,A. et al. (2013) QUAST: quality assessment tool for genome assem-

blies. Bioinformatics, 29, 1072–1075.

Holley, G. et al. (2021), Ratatosk: hybrid error correction of long reads ena-

bles accurate variant calling and assembly. Genome Biol., 22, 1–22.

Hunt, M. et al. (2014) A comprehensive evaluation of assembly scaffolding

tools. Genome Biol., 15, R42.

Kammonen,J.I. et al. (2019) gapFinisher: a reliable gap filling pipeline for

SSPACE-LongRead scaffolder output. PLoS One, 14, e0216885.

Kelley,D.R. et al. (2010) Quake: quality-aware detection and correction of

sequencing errors. Genome Biol., 11, R116.

Kosugi,S. et al. (2015) GMcloser: closing gaps in assemblies accurately

with a likelihood-based selection of contig or long-read alignments.

Bioinformatics, 31, 3733–3741.

Kurtz,S. et al. (2004) Versatile and open software for comparing large

genomes. Genome Biol., 5, R12.

Langmead,B. and Salzberg,S.L. (2012) Fast gapped-read alignment with

Bowtie 2. Nat. Methods, 9, 357–359.

Langmead,B. et al. (2009) Ultrafast and memory-efficient alignment of short

DNA sequences to the human genome. Genome Biol., 10, 1–10.

Li,H. and Durbin,R. (2009) Fast and accurate short read alignment with

Burrows-Wheeler transform. Bioinformatics, 25, 1754–1760.

Lu,P. et al. (2020) PGcloser: fast parallel gap-closing tool using long-reads

or contigs to fill gaps in genomes. Evol. Bioinform. Online, 16,

1176934320913859.

Luo, R. et al. (2012) SOAPdenovo2: an empirically improved

memory-efficient short-read de novo assembler. GigaScience, 1, 18.

Meyer, M. and Kircher, M. (2010) Illumina sequencing library preparation for

highly multiplexed target capture and sequencing. Cold Spring Harb.

Protoc., 2010, pdb.prot5448.

Pachter,L. (2011) Models for transcript quantification from RNA-Seq. arXiv

preprint arXiv:1104.3889. https://doi.org/10.48550/ARXIV.1104.3889.

Paulino, D. et al. (2015) Sealer: a scalable gap-closing application for finishing

draft genomes. BMC Bioinformatics, 16, 1–8.

Prjibelski,A. et al. (2020) Using SPAdes de novo assembler. Curr. Protoc.

Bioinformatics, 70, e102.

Rahman,A. and Pachter,L. (2013) CGAL: computing genome assembly likeli-

hoods. Genome Biol., 14, R8.

Rahman,A. and Pachter,L. (2021) SWALO: scaffolding with assembly likeli-

hood optimization. Nucleic Acids Res., 49, e117.

Sahlin,K. et al. (2012) Improved gap size estimation for scaffolding algo-

rithms. Bioinformatics, 28, 2215–2222.

Salmela,L. et al. (2016) Gap filling as exact path length problem. J. Comput.

Biol., 23, 347–361.

Salzberg,S.L. et al. (2012) GAGE: A critical evaluation of genome assemblies

and assembly algorithms. Genome Res., 22, 557–567.

Simpson, J. T. et al. (2009) ABySS: a parallel assembler for short read sequence

data. Genome Res., 19, 1117–1123.

Thomma,B.P. et al. (2016) Mind the gap; seven reasons to close fragmented

genome assemblies. Fungal Genet. Biol., 90, 24–30.

Vandervalk,B.P. et al. (2014) Konnector: connecting paired-end reads using a

bloom filter de bruijn graph. In: 2014 IEEE International Conference on

Bioinformatics and Biomedicine (BIBM), Belfast, UK, IEEE. pp. 51–58.

Wagner,J. et al. (2022) Curated variation benchmarks for challenging medical-

ly relevant autosomal genes. Nat. Biotechnol., 40, 672–680.

Xu,G.-C. et al. (2019) LR_Gapcloser: a tiling path-based gap closer that uses

long reads to complete genome assembly. GigaScience, 8, giy157.

Xu,M. et al. (2020) TGS-GapCloser: a fast and accurate gap closer for large

genomes with low coverage of error-prone long reads. GigaScience, 9,

giaa094.

Zerbino,D.R. and Birney,E. (2008) Velvet: algorithms for de novo short read

assembly using de Bruijn graphs. Genome Res., 18, 821–829.

3724 S.Tarafder et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/15/3717/6613135 by guest on 09 O
ctober 2022

https://gage.cbcb.umd.edu/
https://doi.org/10.48550/ARXIV.1104.3889

	tblfn1

