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Abstract. We present a novel framework for characterizing signals in
images using techniques from computational algebraic topology. This
technique is general enough for dealing with noisy multivariate data in-
cluding geometric noise. The main tool is persistent homology which can
be encoded in persistence diagrams. These diagrams visually show how
the number of connected components of the sublevel sets of the signal
changes. The use of local critical values of a function differs from the
usual statistical parametric mapping framework, which mainly uses the
mean signal in quantifying imaging data. Our proposed method uses all
the local critical values in characterizing the signal and by doing so offers
a completely new data reduction and analysis framework for quantifying
the signal. As an illustration, we apply this method to a 1D simulated
signal and 2D cortical thickness data. In case of the latter, extra ho-
mological structures are evident in an control group over the autistic
group.

1 Introduction

In neuroimaging, it is usually assumed that measurements f in images follow
the familiar signal plus noise framework

f(x) = µ(x) + ǫ(x), x ∈ M ⊂ R
d, (1)

where µ is the unknown mean signal, to be estimated, and ǫ is noise [3] [15]
[18] [19] [25] [36]. The unknown signal is usually estimated by various spatial
image smoothing over M. The most widely used smoothing technique is kernel
smoothing and its variants because of their simplicity, and because they provide
the theoretical context for scale spaces and Gaussian random field theory [32]
[36].

In the usual statistical parametric mapping framework [15] [19] [36], inference
on the model (1) proceeds as follows. If we denote an estimate of the signal by
µ̂, the residual f − µ̂ gives an estimate of the noise. One then constructs a
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test statistic T (x), corresponding to a given hypothesis about the signal. As a
way to account for spatial correlation of the statistic T (x), the global maximum
of the test statistic over the search space M is taken as the subsequent test
statistic. Hence a great deal of the neuroimaging and statistical literature, have
been devoted to determining the distribution of supx∈M

T (x) using random field
theory [34] [36], permutation tests [30] and the Hotelling–Weyl volume of tubes
calculation [29].

The use of the mean signal is one way of performing data reduction, however,
this may not necessarily be the best way to characterize complex multivariate
imaging data. Thus instead of using the mean signal, in this paper we propose to
use what is known as persistent homology, which pairs local critical values [12]
[13] [39]. It is intuitive that local critical values of µ̂ approximately characterizes
the shape of the continuous signal µ using only a finite number of scalar values.
By pairing these local critical values in a nonlinear fashion and plotting them,
one constructs the persistence diagram [7] [12] [28] [38].

Persistent homology is popular in computational algebraic topology with
applications in protein structure analysis [31], gene expression [11], and sensor
networks [9]. As far as the authors are aware, there is no such applications in
medical image analysis even though this technique is well suited for it. This
is the first paper that applies the concept of persistent homology to medical
imaging data. The proposed method is illustrated using both simulated and real
neuroimaging data. For the simulation, we use 1D Gaussian noise in (1) mainly
for illustration. The 2D neuroimaging data comes from an MRI autism study
[4] where the interest is in quantifying the abnormal cortical thickness pattern
in autistic subjects if there is any. It is shown that certain persistent homology
patterns unique to the autism group is evident.

2 Persistence Diagrams

A function is called a Morse function if all critical values are unique and non-
degenerate, i.e. the Hessian does not vanish [27]. We note that for integer valued
digital images, critical values of intensity may not be all unique; however, the un-
derlying continuous signal µ in (1) is likely and assumed to be a Morse function.
We estimate the signal using a kernel function and obtain a smooth estimate.

For illustrative purposes, we will show how to construct the persistence di-
agram for a 1D Morse function. Assuming µ is a Morse function with a finite
number of critical values, define a sublevel set R(y) = µ−1(−∞, y]. The sub-
level set is the subset of R that satisfies µ(x) ≤ y. The sublevel set can have
many disjoint components. Let #R(y) be the number of connected components
in the sublevel set. Let us denote the local minimums as g1, · · · , gm and the local
maximums as h1, · · · , hn. Since the critical values of the Morse function are all
unique, we can strictly order the local minimums from the smallest to the largest
as

g(1) < g(2) < · · · < g(m)



and similarly for the local maximums as

h(1) < h(2) < · · · < h(n).

We further collect all the critical values,

z1 = g1, . . . , zm = gm, zm+1 = h1, . . . , zm+n = hn

and order them as
z(1) < z(2) < · · · < z(m+n).

At each minimum, we have the birth of a new component, i.e.

#R(gi) = #R(gi − ε) + 1

for sufficiently small ε. The new component is identified with the local minimum
gi. Similarly at each maximum, we have the death of a component, i.e.

#R(hi) = #R(hi − ε) − 1,

and two components will merge as one. The number of connected components
will only change if we pass through critical points and we can iteratively compute
#R at each critical value as

#R(z(i+1)) = #R(z(i)) ± 1.

The sign depends on whether z(i+1) is a maximum (−1) or a minimum (+1).
This is the basis of Morse theory [27] that says the topological characteristics
of a topological space is characterized by the local behavior at critical points
of a Morse function on that space. Persistent homology produces pairs (hi, gj)
of critical values so that a component is born at gj and dies at hi. Of course
these are the (topological) parameters of interest which are unknown and to be
statistically estimated with data generated according to (1).

As an example, the birth and death processes are illustrated in Figure 1,
where the gray dots are simulated with Gaussian noise with mean 0 and variance
0.22 as

f(x) = µ(x) + N(0, 0.22)

with signal µ(t) = 10(t − 1/2)2 + cos(7πt)/2. The signal µ is estimated using
heat kernel smoothing [3] and plotted as the red line. Now we increase y from
−∞ to ∞. When we hit the first critical value y = a, the sublevel set consists

of a single point, i.e. #̂R(a) = 1. When we hit the minimum at y = b, we have

the birth of a new component at b, i.e. #̂R(b) = 2. When we hit the maximum
at y = c, the two components identified by a and b are merged together to form

a single component, i.e. #̂R(c) = 1.
When we pass through a maximum and merge two components, we pair the

maximum with the higher of the two minimums of the two components [12].
Doing so we are pairing the birth of a component to its death. Obviously the



Fig. 1. The births and deaths of components in sublevel sets. We have critical values
a, b, c, d, e, f , where a < b < d < f are minimums and c < e are maximums. At y = a,
we have a single component marked by a single gray area. When we increase the level
to y = b, we have the birth of a new component in addition to the existing component
born at a. At the maximum y = c, the two components merge together to form a single
component. Following the pairing rule [12], we pair (c, b) and (e, d). Other critical values
are paired similarly.

paired extremes do not have to be adjacent to each other. If there is a boundary,
the function value evaluated at the boundary is treated as a critical value. In
our simulated example, we need to pair (b, c) and (d, e). Other critical values
are paired similarly. The reduced persistence diagram is then the scatter plot of
these pairings. For technical reasons, the persistence diagram also include all of
the points (a, a), where a ∈ R.

2.1 Persistence Diagram for Cortical Data

For a 2D Morse function defined on a cortical manifold M ⊂ R3, we need to
also consider saddle points so the situation is more complicated. At a saddle
point, we can have two possible pairings corresponding to either birth or death.
A saddle point may join two components. This case is analogous to the local
maximum in the 1D case. In this case, persistent homology pairs the value of
the saddle point with the larger of the minimums of the two components. This
pair is recorded as the persistence diagram of degree 0 (Figure 4). If the saddle
point does not join two disconnected components, then a hole is born in the
sublevel set. Persistent homology pairs the value at this saddle point with the
value of the local maximum where this hole disappears. This pair is recorded as



Fig. 2. Cortical thickness is computed as the distance between the outer (yellow) and
the inner cortical (blue) surfaces. The cortical thickness is mapped onto a unit sphere
and goes through heat kernel smoothing [3]

the persistence diagram of degree 1 (Figure 4). A more precise definition is given
in Section 4.

Among various cortical measures, in this paper we consider cortical thick-
ness, which has been used in characterizing various clinical populations [4] [14]
[22] [23] [26] [37]. High resolution magnetic resonance images of age-matched
right-handed males (16 high functioning autistic and 11 normal controls) were
obtained using a 3-Tesla GE SIGNA scanner. The collected images went through
intensity nonuniformity correction [33] and were spatially normalized into the
MNI stereotaxic space via a global affine transformation [8]. Subsequently a su-
pervised neural network classifier was used for tissue segmentation [21]. Brain
substructures such as the brain stem were removed to make both the outer and
the inner surfaces to be topologically equivalent to a sphere. A deformable sur-
face algorithm [24] was used to obtain the inner cortical surface by deforming
from a spherical mesh (Figure 2). Then the outer surface was obtained by de-
forming the inner surface. The deformation process establishes the structural
correspondence between the two surfaces. The cortical thickness f is then de-
fined as the distance between the corresponding vertices along the cortical mesh
M.

Since the deformable surface algorithm starts with a spherical mesh, there is
no need to use other available surface flattening algorithms [5] [6] [16] [17] [35]
for mapping thickness to the unit 2–sphere S2. Let ζ : M → S2 be a sufficiently
smooth surface flattening obtained from the deformable surface algorithm. Then
the pullback (ζ−1)∗µ̂ = µ̂ ◦ ζ−1 projects the cortical thickness from the cortical
surface M to the unit sphere. Figure 2 shows the pull back and the corresponding
heat kernel smoothing on S2. Note that in the process of flattening, the critical
values do not change so the persistence diagram should be identical for µ̂ and its
pullback (ζ−1)∗µ̂. Therefore, we will construct the persistence diagram on the
unit 2–sphere by projecting the cortical data to the sphere.



Fig. 3. The flat maps of cortical thickness at different smoothing scales. The maximums
and minimums are denoted with black and white crosses respectively. The smoothing
is done along the unit sphere and flattened using the angles θ (zenith angle) and ϕ

(azimuth angle) associated with the 2-sphere. Smoother thickness produces less number
of critical points and, in turn, less number of pairings.

3 Kernel Smoothing

As described in Section 2.1, after the application of a deformable surface algo-
rithm, our data is on the unit 2– sphere, S2. So our measurement, f : S2 → R

is given by the nonparametric regression formula (1), where µ is the unknown
signal and ǫ is the noise. In this section, we estimate the persistent homology of
the sublevel sets of µ̂, an estimator of µ.

We begin by smoothing the data using the kernel,

Kx0
(x) = max(1 − κ arccos(x′

0x), 0),

where κ is given in [20] and arccos(x′y) gives the geodesic distance between x
and y on the unit sphere. We smooth the data using the usual kernel function
estimator

µ̂(x) =

∑
i f(xi)Kxi

(x)∑
i Kxi

(x)
. (2)

To implement this we need to choose the corresponding design points which
we do in the following way. We start by choosing a triangulation, T , of the
sphere whose number of vertices satisfies the conditions in [1]. For our data, we
start with an icosahedron and iteratively subdivide it three times, obtaining a
triangulation with 1280 faces and 642 vertices.

For a sample of size n, define the estimator µ̂n in the following way. For each
vertex v in our triangulation, we define µ̂n(v) = µ̂(v) according to (2). For each
face in our triangulation, we define µ̂n on the face by affine interpolation from
the values on the vertices. This construction is well defined on the edges, and
defines a function on the sphere.



3.1 The persistence diagrams of µ̂n

It remains to calculate the persistence diagrams of the sublevel sets of µ̂n. We
will see that because of the way µ̂n is constructed, we can calculate its persistence
diagrams using our triangulation, T .

We filter T using µ̂n as follows. Let r1 ≤ r2 ≤ . . . ≤ rm be the ordered list
of values of µ̂n on the vertices of the triangulation. For 1 ≤ i ≤ m, let Ti be the
subcomplex of T containing all vertices v with µ̂n(v) ≤ ri and all edges whose
boundaries are in Ti and all faces whose boundaries are in Ti. We obtain the
following filtration of T ,

φ = T0 ⊂ T1 ⊂ T2 ⊂ · · · ⊂ Tm = T .

The end result is that the topological properties of the sublevel sets of µ̂n will
equal the topological properties of the above filtration of T .

Using the software Plex, [10], we calculate the persistent homology, in degrees
0, 1 and 2 of the triangulation T filtered according to the estimator for each of the
27 subjects. Since the data is two–dimensional, we do not expect any interesting
homology in higher degrees. In degree two, the persistent homology consists of
a single persistence pair (a,∞), where a is the maximum of µ̂n.

To compare the autistic subjects and control subjects, we take the union of
the persistence diagrams of the subjects (Figure 4).

4 Statistical Properties of Persistence Diagram

In this section we will make more precise the definition of a persistence dia-
gram [7] and present results that compare the topological parameters and their
estimators [1] [2].

The persistent homology of the signal, µ, is encoded in its reduced persistence
diagram, D̄(µ), which is a multiset of points each corresponding to the persis-
tence of one topological feature, as in the examples above. In order to define a
metric for such diagrams, it is convenient to add the ordered pairs (a, a) for all
a ∈ R, each with infinite multiplicity. Call this multiset the persistence diagram

of µ, denoted D(µ). We now give the precise definition.
Let k be a nonnegative integer. Given µ : S2 → R and a ≤ b ∈ R the inclusion

of sublevel sets iba : S2
µ≤a →֒ S2

µ≤b induces a map on homology

Hk(iba) : Hk(S2
f≤a) → Hk(S2

f≤b).

The image of Hk(iba) is the persistent homology group from a to b and S2
f≤c =

{f(x) ≤ c}. Let βb
a be its dimension. This counts the independent homology

classes which are born by time a and die after time b.
Call a real number a a homological critical value of µ if for all sufficiently

small ε > 0 the map Hk(ia+ε
a−ε) is not an isomorphism. Call µ tame if it has

finitely many homological critical values, and for each a ∈ R, Hk(S2
µ≤a) is finite

dimensional. In particular, any Morse function on a compact manifold is tame.



Fig. 4. The persistence diagrams for 11 control (blue) and 16 autistic (red) subjects in
degree 0, (a) and (b), and degree 1, (c) and (d). One notices an additional layer of struc-
ture in the autistic group in both persistence diagrams. The figures clearly demonstrate
the feasibility of using persistence diagrams for discriminating populations.

Assume that µ is tame. Choose ε smaller than the distance between any two
homological critical values. For each pair of homological critical values a < b,
we define their multiplicity µb

a which we interpret as the number of independent
homology classes that are born at a and die at b. We count the homology classes
born by time a + ε that die after time b − ε. Among these subtract those born
by a − ε and subtract those that die after b + ε. This double counts those born
by a − ε that die after b + ε, so we add them back. That is,

µb
a = βb−ε

a+ε − βb−ε
a−ε − βb+ε

a+ε + βb+ε
a−ε.

The reduced persistence diagram of µ, D̄(µ), is the multiset of pairs (b, a)
together with their multiplicities µb

a. We call this a diagram since it is convenient
to plot these points on the plane. We will see that it is useful to add homology
classes which are born and die at the same time. Let the persistence diagram of
µ, D(µ), be given by the union of D̄(µ) and {(a, a)}a∈R where each (a, a) has
infinite multiplicity.



Fig. 5. The pairing concentration is computed by counting the number of pairings
within a circle of fixed radius 0.2 at the point x ∈ [1, 7]2. The first (second) row is the
mean concentration map for degree 0 (1) persistence. The first (second) column is the
concentration map of autistic (control). The concentration difference (autism - control)
is given in the last column which shows concentration difference between the groups.

A metric on the space of persistence diagrams is the bottleneck distance
which bounds the Hausdorff distance [7]. It is given by

dB(D(µ), D(ν)) = inf
γ

sup
p∈D(µ)

‖p − γ(p)‖∞, (3)

where the infimum is taken over all bijections γ : D(µ) → D(ν) and ‖ · ‖∞ is the
sup-norm metric. In [7], the following result is proven:

dB(D(µ), D(ν)) ≤ ‖µ − ν‖∞ (4)

where µ, ν : M → R are tame functions. As an immediate consequence of (4), we
can apply it to the model (1). Let Λt(β, L) denote the subset of tame functions
in Λ(β, L) the class of Hölder functions

Λ(β, L) = {f : S2 → R | |f(x) − f(z)| ≤ L(arccos(x′y))β , x, z ∈ S2}, (5)

where 0 < β ≤ 1 and L > 0.
If we assume µ ∈ Λt(β, L) for the model (1) ǫ is N(0, σ2), for the estimator

µ̂n with 0 < β ≤ 1 and L > 0,

sup
µ∈Λt(β,L)

EdB (D(µ̂n), D(µ)) ≤ L2/(2β+2)

(
σ2 (β + 2)23

β2

log n

n

)β/(2β+2)

(6)



as n → ∞ [1], where expectation E is with respect to the model (1).
For typical brain images (L = β = σ2 = 1) using (6), the order of accuracy

per individual is 10−3/2. Consequently, Figure 4 is an accurate description of the
population parameters.

5 Discussion

We have presented the concept of persistence diagrams and described the fil-
tration based algorithm for constructing them. Since cortical thickness is highly
noisy, kernel smoothing is applied to remove high frequency spatial noise before
the filtration. At this point, it is unclear how one determines the possible statis-
tical significance of persistent diagram difference. One may be tempted to use
hypothesis-free classification frameworks for inference, however, Figure 4 shows
that classification based on possibly discriminating spatial pattern is likely to be
challenging. Note that the autistic scatter plots basically encompass the control
scatter plots for the degree 0 and degree 1 persistence diagrams. Since there
is considerable overlap, machine learning techniques would need to be adapted
for this challenge. On the other hand, there seems to be spatial concentration
difference in the pairings.

We have computed the pairing concentration by computing the number of
parings within a circle of radius 0.2 at the point x ∈ [1, 7]2. The average pair-
ing concentration maps are shown in Figure 5, where we can see concentration
difference for both the degree 0 and 1 persistence diagrams. The significance of
the concentration map difference is determined using a permutation test. We
first constructed the two sample t statistic map T (p). The type-I error for cor-
recting for multiple comparisons of a one-sided test is given by supp∈[1,7]2 T (p)
[36]. The empirical distribution of supp∈[1,7]2 T (p) is then estimated from 5000
random permutations. For the degree-0 persistence, we obtain the maximum
T -stat value of 3.51 corresponding to the corrected p-value of 0.078 at the posi-
tion (2.3, 4.2). For the degree-1 persistence, the maximum T -stat value is 3.95
corresponding to the corrected p-value of 0.021 at the position (5.5, 5.8).

Our finding is consistent with previous neuroanatomical studies that show
the abnormal neuroanatomical structures for autistic subjects [4]. Here we only
presented a simple nonparametric approach for determining statistical signifi-
cance based on the pairing concentration. Possibly a better statistical inference
procedure is needed. It is hoped that this paper presents itself as a spring board
for further investigation of persistence diagram based characterization of med-
ical images. There are many methodological issues we have not discussed such
as rigorous inferential procedures or the estimation of confidence regions around
paired points possibly via the bootstrap. These are the next challenges in future
works.
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