
1. DTI Data Acquisition and Pre-processing:

High resolution T1-weighted magnetic resonance images (MRI) were acquired with a GE
SIGNA 3-Tesla scanner with a quadrature head coil with 256 X 256 mm field of view 
and  124  axial  sections.  The  voxel  dimensions  are  0.937 X 0.937 X 1.200  mm.  T2-
weighted images were used to smooth out inhomogeneities in the inversion recovery-
prepared images using FSL (www.fmrib.ox.ac.uk/fsl). The Autism Diagnostic Interview-
Revised ([27]) was used for diagnoses  by trained researchers  K.M. Dalton and B.M. 
Nacewicz ([26]). Diffusion weighted images were acquired in 12 non-collinear diffusion 
encoding directions with diffusion weighting factor (b=0) 1000 s/mm2 in addition to a 
single reference image. The voxel resolution for the DTI data is 256 X 256 X 39 mm and 
voxel dimensions are 0.9375 X 0.9375 X 3.0 mm.

Eddy current related distortion and head motion of each data set were corrected using 
AIR and distortions from field inhomogeneities were corrected using custom software 
algorithms based on [1]. The six tensor elements were calculated using non-linear fitting 
methods  available  in  CAMINO  [3,4,5].  Finally,  the  resulting  tensor  volumes  were 
resampled to a voxel space of 128 X 128 X 64 with voxel dimensions equal to 1.5mm X 
1.75mm X 2.25mm. The resampled volume, with axial dimension equal to a power of 2, 
is better suited for registration algorithms that require the construction of standard multi-
resolution image pyramids.

The DTI data from 31 subjects were used in this study:
1) 17 subjects with high functioning autism spectrum disorders.
2) 14 control subjects matched for age, handedness, IQ, and head size.

A population-specific  tensor  template  was  constructed  from all  31  subjects  using  an 
iterative strategy similar to the one described in [7,8]. An initial template was computed 
as an average of the original  subject  diffusion tensor images.  The template  was then 
iteratively  refined  by  repeating  the  following  procedure:  register  the  subjects  to  the 
template, and then compute a refined template for the next iteration as an average of the 
normalized  images.  This  procedure  was repeated  until  the  change between templates 
from consecutive iterations became sufficiently small. During each iteration, the diffusion 
tensor  images  were  registered  to  the  respective  template  estimate  using  the  tensor 
registration algorithm described later in the section. The FA template was taken as the FA 
map derived from the tensor template and it is illustrated in Fig. 1.



Fig. 1. FA-weighted RGB-encoded principle diffusion direction map of the population 
specific template obtained after 6 iterations of diffeomorphic registration.

2. DTI Spatial Normalization:

Spatial normalization of diffusion tensor images plays a key role in voxel-based analysis 
of white matter (WM) group differences. The quality of spatial normalization determines 
the extent to which the shared anatomy, in this case WM tracts, are aligned. Therefore, it  
has direct impact on the successful removal of shape confounds and consequently on the 
validity,  specificity,  and  sensitivity  of  the  subsequent  statistical  inferences  of  group 
differences. Currently, the large majority of clinical studies have chosen to employ the 
spatial  normalization  approach  of  aligning  the  diffusion  tensor  images  using  low-
dimensional image registration algorithms via their corresponding structural images, i.e., 
T1- or T2-weighted images [9,10,11,12,13,14,15], or via their fractional anisotropy (FA) 



images  [16].  This  normalization  strategy  allows  researchers  to  take  advantage  of 
available registration tools, with the nonlinear normalization algorithm within SPM2 [17] 
being the most commonly used. However, the limited spatial  normalization quality of 
low-dimensional approaches has made the interpretation of their findings challenging, as 
discussed in [18]. The registration algorithms underlying the low dimensional approaches 
use  low-dimensional  representations  of  spatial  transformation  that  can  not  adequately 
model  the  complex  brain  morphological  differences  often  seen  across  subjects. 
Inadequate  normalization  with  low-dimensional  approaches  can  result  in  insufficient 
removal of shape differences which in turn can confound FA differences in a complex 
manner,  and  that  utilizing  high-dimensional  normalization  can  both  significantly 
minimize the confounding effect of shape differences to FA differences and provide a 
more  complete  description  of  WM  differences  in  terms  of  both  size  and  tissue 
architecture  differences  [7].  Further  high-dimensional  approaches,  by  leveraging  full 
tensor features instead of tensor-derived indices, can further improve the alignment of 
WM  tracts  (see  for  e.g.  Fig.  2).  Spatial  normalization  strategies  based  on  high-
dimensional  registration  methods  have  so far  found few clinical  applications  in  WM 
studies, with the Park et al. analysis of WM asymmetry [19] being one notable exception.

Fig. 2. Tensor based registration can leverage rich discriminating features especially in 
the white  matter  of the brain where structural  imaging is  ambiguous.  Encircled  areas 
show some example areas in the white matter where DTI offers richer description for 
registration.

The state-of-the-art  diffusion tensor image registration algorithm presented in [7] was 
used for spatial normalization of the subjects. There are two steps:



1)  Initial  Alignment:  The  diffusion  tensor  images  were  first  affinely  aligned  to  the 
template. The tensor images after the affine alignment were provided as the input to the 
tensor registration algorithm.

2) Tensor Normalization:  The algorithm leverages  full  tensor-based similarity metrics 
while  optimizing tensor orientation explicitly.  It approximates  smooth transformations 
using a dense piecewise affine parameterization which is sufficient when the required 
deformations are not large. They used the tensor metric that measures the  L2 distance 
between  the  anisotropic  parts  of  the  apparent  diffusion  profiles  associated  with  the 
diffusion  tensors,  as  described  in  [20].  Under  this  metric,  the  distance  between  two 
diffusion tensors D1 and D2 is equal to 
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3. Tractography:

Tractography is performed in the normalized space by using the thresholded FA map of 
the population template. Since the tractography is performed using the normalized seed 
file  the  fiber  bundles  across  the  subjects  have  same  starting  points.  Streamline 
tractography based on TENsor  Deflection  ([29])  has  been  used  to  generate  the  fiber 
tracts. The implementation in CAMINO was used for the purpose. Sample tractography 
results for two subjects can be seen in Fig. 3.

Fig.  3.  Sample  tractography results  in  normalized  space  for  two different  subjects  in 
different views. On the right. The tracts are overlaid on axial view of the FA of template.


