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Abstract

We recast the Cosegmentation problem using Random
Walker (RW) segmentation as the core segmentation algo-
rithm, rather than the traditional MRF approach adopted
in the literature so far. Our formulation is similar to previ-
ous approaches in the sense that it also permits Cosegmen-
tation constraints (which impose consistency between the
extracted objects from ≥ 2 images) using a nonparamet-
ric model. However, several previous nonparametric coseg-
mentation methods have the serious limitation that they re-
quire adding one auxiliary node (or variable) for every pair
of pixels that are similar (which effectively limits such meth-
ods to describing only those objects that have high entropy
appearance models). In contrast, our proposed model com-
pletely eliminates this restrictive dependence – the resulting
improvements are quite significant. Our model further al-
lows an optimization scheme exploiting quasiconvexity for
model-based segmentation with no dependence on the scale
of the segmented foreground. Finally, we show that the op-
timization can be expressed in terms of linear algebra oper-
ations on sparse matrices which are easily mapped to GPU
architecture. We provide a highly specialized CUDA library
for Cosegmentation exploiting this special structure, and re-
port experimental results showing these advantages.

1. Introduction

The problem of Cosegmentation [1], has attracted much
attention from the community in the last few years [2–
6]. The basic goal in Cosegmentation is to segment a
common salient foreground object from two or more im-
ages, as shown in Fig. 1. Here, consistency between the
(extracted) object regions is accomplished by imposing a
global constraint which penalizes variations between the
objects’ respective histograms or appearance models. The
idea has been adopted for obtaining concise measures of
image similarity [1], discovering common appearance pat-

Figure 1. A representative application for cosegmentation.

terns in image sets [7], medical imaging [8], and building
3D models from community photo collections [2, 9]. Mo-
tivated by the spectrum of these applications, some recent
papers have sought to better understand the optimization-
specific aspects of this problem – in particular, issues such
as sub-modularity [1], linear programming relaxations [4],
dual-decomposition based strategies [5], network flow con-
structions [8], and maximum-margin inspired interpreta-
tions [10]. Most of these works provide good insights on
cosegmentation, but only in the context of the traditional
Markov Random Field (MRF) based segmentation objec-
tive (referred to as graph-cuts [11]). This may be partly
because the first work on Cosegmentation [1] presented
means for including global constraints within segmentation
but was designed specifically for the MRF function. The
present paper complements this body of research, and pro-
vides an end-to-end analysis of the Cosegmentation prob-
lem in terms of the Random Walker segmentation function
[12] – these results show that in many cases, well-known
advantages of the Random Walker model extend nicely to
the Cosegmentation setting as well.

A Toy example. An
important aspect of
our formulation is
that it is possible to
employ a nonpara-
metric appearance
model for arbitrary distributions but without incurring
rather substantial additional computational costs. When
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there are significant regions of homogeneity in the fore-
ground (inline figure), we clearly want a distribution which
has a corresponding peak. In Fig. 1, the distribution should
capture the fact that the bear is “brown and furry”, and not
try to differentiate one patch of fur from another across
multiple images. To illustrate why this point is relevant,
let us analyze the overhead of some existing methods for
cosegmentation by considering a simple toy example (see
inline image pair) where we should identify the common
blue circle (in distinct backgrounds). Several approaches
for cosegmentation with a nonparametric model require
that an auxiliary node (or variable) be introduced into the
graph whenever two pixels share the same bin [4, 8] (i.e.,
the two pixels are similar). While the segmentation aspect
for the blue circles by itself is easy, the cost of introducing
an auxiliary node for perceptually similar pixels can grow
very quickly – counting just the blue foreground pixels for
a 196 × 196 image pair, one must introduce 42 million
additional variables, and the associated cost is infeasible
even for moderately sized images. As a result, these
previous models are limited to feasibly cosegmenting only
those image pairs that have a relatively high entropy distri-
bution (i.e., each bin is shared by only a few pixels). Our
formulation has no such limitation, since auxiliary nodes
are not needed to perform the optimization. Consequently,
it is possible to perform cosegmentation in general settings
where the target foreground is summarized with an arbitrary
appearance model (color, texture), but with no associated
restriction on its entropy. Further, several nonparametric
cosegmentation models (except [10]) are somewhat limited
to segmenting foregrounds which are at the same scale
within each image. Our method compares histograms
independent of scale, and the objective is shown to be
quasiconvex. This is leveraged to develop an optimization
scheme which can solve this nonconvex problem with
optimality guarantees. Finally, all optimization steps in
the core method can be expressed as sparse linear algebra
operations, which makes GPU implementations possible.

Related Work. The initial model for Cosegmentation
in [1] provided means for including global constraints to
enforce consistency among the two foreground histograms
in addition to the MRF segmentation terms for each image.
The objective function incorporating these ideas was
expressed as follows

Ecoseg = MRFimage 1 + MRFimage 2 + λEglobal(h1, h2), (1)

where Eglobal(·, ·) was assumed to penalize the `1 variation
between each h1 and h2 (the two foreground histograms
obtained post segmentation). The appearance model for
the histogram was assumed to be generative (i.e., Gaus-
sian), and a novel scheme called trust region graph cuts was
presented for optimizing the resulting form of (1). Sub-
sequently, [4] argued in favor of using an `22-distance for
Eglobal(·, ·) whereas [8] developed a reward based model.
Batra et al. [2] suggested exploiting user interaction if
available for cosegmentation (again, using MRF terms) and
[3, 10] have adopted a clustering based approach to the

problem. Recently, [5] compared several existing MRF-
based models, and presented a new posterior-maximizing
scheme which was solved using dual decomposition. Other
recent ideas include modulating the graph-cuts objective a
priori by finding similar patterns across images [3], gen-
erating multiple segmentations of each image and identify-
ing which segmentation pair is similar [13], and identifying
salient regions followed by a filtering step to leave out dis-
tinct regions not shared across images [14]. One reason for
these varied strategies for the problem is that when a his-
togram difference term is added to the segmentation, the
resultant objective is no longer submodular (therefore, not
easy to optimize). So, the focus has been on improved ap-
proximate algorithms for different choices of Eglobal.

A commonality among these existing works has been the
preference for MRF (i.e., graph-cuts) based terms for seg-
mentation. Part of the reason is that combinatorial methods
such as graph-cuts are extensively used in vision, and are
known to be efficient. On the other hand, graph-partitioning
methods such as Random Walker [12] also work well for
image segmentation and are widely used. Our formaliza-
tion here suggests that it is also well suited for the Coseg-
mentation problem and offers efficiency benefits (e.g., is-
sues identified in the blue circles example) in the nonpara-
metric setting.

The contributions of this paper are: (1) We derive a
cosegmentation model with the Random Walker segmen-
tation at its core. The model finally reduces to a Box-QP
problem (convex program with box constraints). Based
on this structure, we propose a specialized (and efficient)
gradient projection based procedure which finds a global
real-valued optimum of the model (which preserves many
advantages of Random Walker [12]). (2) Our model al-
lows for a nonparametric representation of the foregrounds
(e.g., using distributions over texture words), but one which
permits any distribution of features without incurring ad-
ditional computational costs. This provides a substantial
advantage over the existing nonparametric cosegmentation
approaches which are limited only to regions described by
a high entropy model (i.e., object features must be spread
evenly across bins). (3) We extend this model to a scale-
independent penalty. This paper presents a novel optimiza-
tion method for a class of objectives based on quasicon-
vex functions. We prove correctness, and demonstrate it for
model-based image segmentation. These theoretical results
are of independent interest. (4) Our optimization consists
of linear algebra operations (BLAS Level 1, 2) on sparse
matrices. Consequently, the algorithm is easy to implement
on a GPU architecture. We give a specialized open-source
CUDA library for Cosegmentation.
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2. Random Walker and its properties
The Random Walker segmentation algorithm has been

studied extensively in the computer vision literature. Essen-
tially, the method simulates a random walk from each pixel
in the image to a set of user specified seed points where the
walk is biased by image intensity gradients. The eventual
assignment of pixels to foreground or background is deter-
mined by whether the pixel-specific walk reaches a fore-
ground (or background) seed first. Observe a subtle yet im-
portant property of how the Random Walker model is spec-
ified, and what the solution actually denotes. Because of
direct analogues in circuit theory and physics, the formal-
ization, even in its original form, seeks a solution in reals
(not integers). What is eventually solved is therefore not
a relaxation because the variables have a clear probabilis-
tic meaning. As a result, thresholding these probabilities at
0.5 is statistically sound; conceptually, this is different from
solving a binary linear program in reals and recovering a
{0, 1} solution by rounding. In practice, Random Walker
is optimized by recasting segmentation as the solution to a
combinatorial Dirichlet problem. Random Walker derived
segmentations offer some benefits with respect to boundary
length regularization, number of seeds, metrication errors,
and shrinking bias [15].

3. Random Walker for Cosegmentation
We begin our presentation by rewriting the Random

Walker algorithm for a single image as a quadratic min-
imization problem (also see [16]). As is common,
we assume a 4-connected neighborhood over the image,
weighted according to a Gaussian function of normal-
ized Euclidean distances between pixel intensities, wij =
exp (−β‖pi − pj‖). The Laplacian L of the graph is then

Lij =


∑

k wik if i = j

−wij if i 6= j and (i, j) ∈ neighborhood graph

0 otherwise
(2)

The Laplacian is diagonally dominant and so L � 0; we
can derive the following convex quadratic program,

min
x

xTLx subject to x(s) = m(s), (3)

where x(s) are the values for certain seed pixels, and m(s)

is the known value of those seeds (i.e., foreground or back-
ground). Each component of the solution x∗ will then be a
pixel’s probability of being assigned to the foreground. To
output a {0, 1} segmentation, we may threshold x∗ at 1

2 , to
obtain a hard x ∈ {0, 1}n segmentation which matches the
solution from [12].

Pre-processing. Cosegmentation methods [8] use a pre-
processing procedure to determine inter- (and intra-) image
pixel similarity. This is generated by tesselating the RGB
color space (i.e., pixel distribution) into clusters or by using

SIFT (or color pattern models, edge-profiles, textures etc)
based correspondence methods, see [17]. We can derive a
matrix H such that

Hkj
i =

{
1 if pixel j is in histogram bin k in image i
0 otherwise

(4)

Here, pixels are assigned to the same bin if they are similar.
With an appropriate H , the global term Eglobal from (1) re-
quires that at the level of individual histogram bins k, the al-
gorithm assign approximately the same number of pixels to
each foreground region (the objective incurs a penalty pro-
portional to this difference). This ensures that the appear-
ance models of the two foregrounds based on the features
of interest are similar, and has been used very successfully
in object recognition [18]. Observe that this difference only
serves as a regularizer for the main segmentation task, and
does not drive it on its own. This is relevant because as with
any global measure, such models (and the measurement of
their variations) may not be perfect. But existing literature
suggests that when derived from good context-based fea-
tures [18], such appearance model based differences pro-
vide a meaningful global bias for Cosegmentation [2].

Cosegmentation for 2+ images. Given a segmentation
for n pixels, x ∈ {0, 1}n, one may use the H matrix from
(4) to write the histogram of only the foreground pixels as
h = Hx. The expression gives the form of constraints
needed for Cosegmentation. Let L1, · · · , Lm be the Lapla-
cian matrices of graphs constructed using each of the im-
ages, and H1, · · · , Hm be the histogram assignment matri-
ces from (4), with the property that Hkj

i = Hkj′

i′ = 1 for
pixels j and j′ if and only if j and j′ are similar. Here, if
one uses SIFT matches, then the matrix entry may reflect
the confidence of the match. Now, we seek to segment the
two images simultaneously, under the constraint that their
histograms match. For this purpose, it suffices to consider
the following optimization model

min
xi,hi,h̄

∑
i

xTi Lixi + λ‖hi − h̄‖22

s.t. xi ∈ [0, 1]ni , x
(s)
i = m

(s)
i , Hixi = hi, i = 1...m.

(5)
The second term in the objective above corresponds to

Eglobal(h1, h2) in (1), and the last constraint sets up the
foreground histograms, hi using Hi and (bin k in H1 cor-
responds to bin k in H2, · · · , Hm which makes a direct
comparison between histograms possible). Instead of com-
paring the histograms to each other, we compare them to a
common global histogram h̄ which at the optimum will be
the centroid of the hi’s. The resulting inter-image match-
ing penalty will then be the trace of the covariance be-
tween foreground histograms across the image set. This
model additionally extends to multiple labels (i.e., multi-
ple objects) by adding additional columns to the optimiza-
tion variables identically to [12]. The resulting problem can
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be easily decomposed into separate segmentations for each
object class. Existing cosegmentation methods, on the other
hand, mostly tackle figure-ground labeling.

Each Laplacian matrix Li is postive semidefinite, so
along with the histogram distances the objective function
is convex. Further, the feasible region is the intersection of
bound constraints and linear equalities. We directly have:

Theorem 3.1. For λ ≥ 0, (5) is a convex problem.

3.1. Deriving an equivalent Box-QP

The model in (5) can already be solved using widely
available convex programming methods, and provides the
desired solution to the Cosegmentation problem using the
Random Walker segmentation function. Next, we will de-
rive an equivalent model (but with a much nicer structure)
that will allow the design of specialized solvers and thereby
lead to far more efficient algorithms.

Consider the left hand side of the equality constraint
on each hi, substituted into the objective function with a
penalty ‖h1 − h2‖. Further, let us choose bounds to limit
x to the unit box as well as suitably enforce the seed con-
straints. This process gives a quadratic problem of the form

min
x1,x2

[
x1
x2

]T [
L1 + λHT

1 H1 −λHT
1 H2

−λHT
2 H1 L2 + λHT

2 H2

] [
x1
x2

]
(6)

s.t. li ≤ xi ≤ ui xi is of size [0, 1]ni i = 1, 2,

where the 2-tuple (li, ui) is (1, 1) for foreground seeds,
(0, 0) for background seeds, and (0, 1) otherwise. For
m > 2 images we optimize over x1, · · · , xm, h̄ with
quadratic objective matrix

L1 + λHT
1 H1 −λH1

. . .
...

Lm + λHT
mHm −λHm

−λHT
1 . . . −λHT

m λmI


It can be verified that (6) is equivalent to (5). The dif-

ference is that it is now expressed as a bound-constrained
quadratic problem (or box-QP due to the box constraints).
Like (5), the model in (6) also permits general purpose con-
vex programming methods. However, we can design means
to exploit its special structure since the model is nearly an
unconstrained quadratic problem.

4. Scale-Free Cosegmentation
A limitation of previous cosegmentation methods is their

sensitivity to the scale of the target object, since histogram-
based priors are dependent on scale. For example, if an
otherwise identical object appears in the second image such
that it occupies twice as many pixels as in the first image,
then h2 = 2h1. Consequently, ||h2 − h1|| > 0, mean-
ing that the larger scale is penalized in traditional formu-
lations. We show here how our formulation may be made

Figure 2. Segmentation using the model of section 4 on a set of
images from the iCoseg dataset with differences in scale. h̄ from
an image in the same set was applied as a prior.

scale-invariant. Formally, our goal is to modify the coseg-
mentation term to satisfy

E(shi, h̄) = E(hi, h̄) ∀s ∈ R+. (7)

This property may be satisfied by a normalization step,

E(hi, h̄) =

∥∥∥∥ hi

‖hi‖
− h̄

‖h̄‖

∥∥∥∥2 = 2− 2
hT
i h̄

‖hi‖‖h̄‖
. (8)

Substituting these normalized histograms in (5) leads to
a function that cannot be efficiently optimized. However,
in the Random Walker setting, we can optimize this func-
tion when the model histogram h̄ is fixed. The resulting
problem is related to model-based segmentation, where we
are imposing a known histogram distribution in segmenting
images. Given normalized prior h̄, the resulting energy is

ĝh̄(h) = − h̄
Th

‖h‖
. (9)

In order to proceed with the minimization of our scale-
invariant energy, we must first establish some properties of
(9). Proofs appear in the extended version of this paper.

Theorem 4.1. ĝh̄ is quasiconvex. [19]

Corollary 4.2. The scale-free energy on x, gh̄(x) =
ĝh̄(Hx) is quasiconvex for histogram assignment matrixH .

Theorem 4.3. gh̄(x) is Lipschitz-smooth when ‖Hx‖ > 0.

The next section exploits these properties of gh̄ to solve
the segmentation problem using this penalty.

4.1. Nonconvex Sum Minimization

For the following, we consider the setting of minimizing
h = f + g, such that f is convex, g is quasiconvex and
both are bounded below. Note that under these conditions,
h is not necessarily quasiconvex and may have multiple lo-
cal minima. Nonetheless, our method proposed below can
optimize our segmentation objective with f(x) = xTLx
and g as defined in Corollary 4.2. Let x∗f = argminx f(x),
similarily define x∗g and x∗h.

Theorem 4.4. Define

P(α) =

 argmin
x∈X

f(x)

s.t. g(x) ≤ α

 (10)

For x any solution to P(g(x∗h)), h(x) = h(x∗h).
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Theorem 4.5. P(α) has no solutions for α < g(x∗g), and x
is a solution to P(g(x∗f )) iff x is a solution ∀α > g(x∗f ).

Theorem 4.6. h ◦ P is one-sided Lipschitz.

For more details on the one-sided Lipschitz condition see
[20] and the extended version of this paper. With the re-
sult of Theorem 4.6, by simply sampling h(P(α)) densely
enough, we can get an estimate of this function to arbitrary
precision over the entire interval α ∈ [g(x∗g), g(x∗f )], using
bounds similar to [21]. If we select a global minimum of
this estimated function, we can derive a point with objec-
tive arbitrarily close to the true minimum of h.

5. Optimization
This section describes our strategy for solving (6) to op-

timality in a highly efficient manner. We use a projected
gradient-based method which would additionally form the
key component if we were to use any variation (i.e. aug-
mented Langrangian) as stated explicitly in [22].
Identifying a Sparse Structure: Expressing our model as
a purely bound-constrained problem as in (6) requires the
formation of the HT

i Hi products which form dense n × n
matrices. Consequently, our optimization method must be
careful not to explicitly form these matrices. Fortunately,
we observe that explicit formulation of these matrices may
be avoided by gradient projection methods, which are a sim-
ple and efficient class of algorithms in which it is only nec-
essary to be able to calculate matrix-vector products. Here,
this product can be distributed over the sparse components,

(L+HT
1 H1)x1 = Lx1 +HT

1 (H1x1). (11)

With this modification, we can solve our Box-QP in (6)
by adapting the Gradient Projection/Conjugate Gradient
(GPCG) algorithm of [23]. We describe this strategy next.

5.1. GPCG

GPCG solves quadratic problems with a rectilinear feasi-
ble region Ω = {x : l ≤ x ≤ u}. The algorithm alternates
between two main phases (GP and CG): these correspond
to alternately estimating the active set at the minimum and
finding the minimum while keeping the active set fixed.
A) Gradient Projection (GP). Gradient projection coupled
with the projected line search allows fast searching of a
wide range of Ω. As a result, we can rapidly estimate which
face of the feasible region the optimum lies on.
A.1) Search Direction for GP: In this phase, we search
along a projected gradient ∇ΩO(x) which has been mod-
ified so the corresponding search direction d = −∇ΩO
does not point outside the feasible region. Specifically, this
search direction is constructed to satisfy ∃ ε > 0 such that
x+ εd ∈ Ω. We then use a projected line search (described
later) to arrive at a step length α and update x← x+ αd.

A.2) Phase Switch for GP: We switch to the conjugate gra-
dient phase if either of the following conditions are satis-
fied: (a) The active set A = {i : xi = li or xi = ui}
remains unchanged between two iterations; note that the ac-
tive set corresponds to the minimal face (w.r.t. inclusion) of
Ω to which x belongs; (b) GP is making little progress.

B) Conjugate Gradient (CG). We search a given face of
the feasible region of our model using the conjugate gradi-
ent phase described below.
B.1) Search Direction for CG: Given the active set, our al-
gorithm calculates a search direction conjugate to the previ-
ous direction (under the projection on to the free variables).
Note that this method of generating a search direction is the
same as applying ordinary conjugate gradient descent to a
restriction of the QP to the current minimal face.
B.2) Phase Switch for CG: If the projected gradient points
out of the current face (or if the iterations are making little
progress), we switch back to the gradient projection (GP)
phase. Formally, this is true if ∃i ∈ A(x) and either

xi = li and ∂iO(x) < 0, or xi = ui and ∂iO(x) > 0.

Note that these “phase switch” conditions will never be
satisfied for the face which contains the global minimum for
our model. Thus, when the gradient projection phase has
found the correct active set, conjugate gradient iterations
suffice to explore the final face.
C) Projected Line Search: The projected line search mod-
ifies the active set by an arbitrary number of elements, and
helps our GPCG process. Given a starting point x and
search direction d, the line search finds α > 0 which pro-
duces a sufficient decrease under the Armijo rule of the
function φ(α) = O (P [x+ αd]), where P describes the
projection function which maps its input to the closest point
in Ω. This can be thought of as a “line search” along a 1-
manifold which bends to stay within Ω (thus, not a ray).
Rather than directly finding all the piecewise quadratic seg-
ments of φ(α), we efficiently produce a sufficient decrease
using an estimate of φ by sampling one point at a time (as
in [23]). It can be verified that all operations above can be
expressed as Level 1, 2 BLAS operations. This allows a
highly parallel implementation, described next.
D) GPU Implementation. Graphical Processing Units
(GPUs) have gained attention from a wide range of the sci-
entific computing community for their ability to efficiently
address parallel problems. These architectures operate by
running multiple instances of a piece of code simultane-
ously, operating on different parts of a dataset. While this
approach is not well-suited to all algorithms, Level 1 and
2 BLAS operations used in our algorithm are known to fit
well with this architecture and can therefore exhibit a sig-
nificant speedup. The linear algebra operations compris-
ing our GPCG algorithm for Cosegmentation may be easily
parallelized using high-level languages as CUDA. In fact,
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the CUSPARSE toolkit (used here), supports Level 2 and 3
BLAS operations on sparse matrices as well. Further, the
control flow of our procedure relies only on the results of
accumulations, so the standard bottleneck of transferring
data between main and GPU memory is not a major factor,
and entry-level hardware is sufficient.

6. Experiments
Summary: Our experimental evaluations included com-
parisons of our implementation (on a Nvidia Geforce 470)
to another Cosegmentation method [8], and the Random
Walker algorithm [12] (run independently on both images).
We also performed experiments using the methods in [4]
and [10], but due to the problem of solving a large LP
and incorporation of foreground/background seeds respec-
tively, results could not be obtained for the entire dataset
described below. To assess relative advantages of the spe-
cialized GPCG procedure, we also compared it with a stand-
alone implementation of (5) linked with a commercial QP
solver (using multiple cores). We provide a qualitative and
quantitative overview of the performance w.r.t. state of the
art. Additional experiments demonstrate the efficacy of the
multiple-image and scale-free segmentation models. The
full set of segmentation results and code is available at
http://pages.cs.wisc.edu/~mcollins/pubs/cvpr2012.html

Datasets: In order to leverage all available test data we ag-
gregated all images provided by the authors in iCoseg [2],
Momi-coseg [3] and Pseudoflow-coseg [8], and further sup-
plemented them with a few additional images from the web
and [24]. In order to compare with algorithms that only
handle image pairs we selected a dataset with 50 pairs of
images (100 total). For the > 2 image case we used the
iCoseg dataset from [2]. Since a number of image sets from
(from [2]) share only semantically similar foreground ob-
jects and are unsuitable for cosegmentation with common
appearance models, we selected 88 subsets comprising 389
of the 643 iCoseg images (also observed in [13]).
Winn Filters: Histograms were constructed using the 17-
filter bank proposed in [18] as features. Pixels across both
images were assigned to bins by clustering these responses,
using nonparametric methods to estimate the number of
clusters k. The first step produces local contextual descrip-
tors of each image pixel. The clustering step finds those
pixels which are similar under the given descriptor (similar
color and texture will be in the same bin). We also incor-
porated SIFT-based features, but given that the above his-
tograms already provided good results, this additional mod-
ule was not utilized further. In Fig. 7 we perform correspon-
dences based on optical flow in order to segment frames of a
video sequence. Other correspondence determination meth-
ods can be used and no change to our algorithm is needed.
Low Entropy Histograms: When the number of bins is
high (constructed histogram is flat), it is more likely that a

non-trivial number of “matches” will be erroneous – espe-
cially because in cosegmentation the two images may have
distinct backgrounds without a shared baseline. In our ex-
periements we found that as the entropy increases, so does
the JS divergence measure between the histograms for the
true segmentations. Low entropy histograms, however, re-
late to smaller divergences, which impose the global Coseg-
mentation constraint more tightly.
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Figure 3. Variation in run-time with his-
togram granularity relative to a Cplex-
based implementation and [8].

Running time com-
plexity: We now
discuss what is the
strongest advantage
of this framework.
We show an example
in Fig. 3 of the
running time of the
proposed model
relative to [8], as a
function of decreas-
ing entropy (number
of bins). The plot suggests that for a realistic range, our
implementation has a negligible computation time relative
to [8] and the CPLEX-based option – in fact, our curve
almost coincides with the x-axis (and even this cost was
dominated primarily by the overhead from problem setup
done on the CPU). For the most expensive data point shown
in Fig. 3, the model from [8] generated 107 auxiliary nodes
(about 12 GB of memory). Due to the utility of low entropy
histograms, these experiments show a salient benefit of
our framework and its immunity to the ‘coarseness’ of
the appearance model. Over all 128 × 128 images, the
wall-clock running time of our CUDA-based model was
10.609 ± 5.230 seconds (a significant improvement over
both [8, 10]). The time for a Cplex driven method (utilizing
four cores in parallel) was 17.982 ± 5.07 seconds, but this
increases sharply with greater problem size.
Performance w.r.t. pair methods: We evaluated the qual-
ity of segmentations (0/1 loss) on the 50 image pairs de-
scribed above, relative to Pseudoflow-coseg [8], LP [4]
(only partial), and discriminative clustering [10]. As in [12],
a few seeds were placed to specify foreground and back-
ground regions, and given to all methods. Representative
samples on the images from [2] using the method in [8, 10]
are shown in Fig. 4. Averaged over the pair dataset, the seg-
mentation accuracy of our method was 93.6± 2.9%, where
as the gross values for the algorithms from [8] and [10] were
89.1% and 84.1% respectively.
Performance on 2+ images: Across the iCoseg dataset we
achieved an accuracy of 93.7% with seeds provided by 5
different users. The algorithm of [10] achieves an accuracy
of 82.2% across the dataset (excluding some for which the
implementation provided by the authors did not complete).
Representative image sets and accuracy comparisons appear
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in Table 1 and Figure 5.
We note that these results must be interpreted with the

caveat that different methods respond differently to seed lo-
cations and the level of discrimination offered by the under-
lying appearance model. Since most cosegmentation mod-
els (including this paper) share the same basic construction
at their core (i.e., image segmentation with an appearance
model constraint), variations in performance are in part due
to the input histograms. The purpose of our experiments
here is to show that at the very least one can expect similar
(if not better) qualitative results with our model, but with
more flexibility and significant computational advantages.
Comparisons to independent Random Walker runs: In
Fig. 6, we present qualitative results from our algorithm,
and from independent runs of Random Walker (both with
up to two seeds per image). A trend was evident on all im-
ages – the probabilities from independent runs of Random
Walker on the two images were diffuse and provide poorer
boundary localization. This is due to the lack of global
knowledge of the segmentation in the other image. Ran-
dom walker based Cosegmentation is able to leverage this
information, and provides better contrast and crisp bound-
aries for thresholding (a performance boost of up to 10%).

7. Conclusions
We present a new framework for the cosegmentation

problem based on the Random Walker segmentation ap-
proach. While almost all other cosegmentation methods
view the problem in the MRF (graph-cuts) setting, our algo-
rithm translates many of the advantages of Random Walker
to the task of simultaneously segmenting common fore-
grounds from related images. Significantly, our formulation
completely eliminates a requirement in some cosegmenta-
tion methods that requires the overall image histogram to be
approximately flat. Our model extends nicely to the multi-
image setting using a penalty with statistical justification. A
further extension allows model-based segmentation which
is independent of the relative scales of the model and target
foregrounds. We discuss its optimization specific proper-
ties, give a state of the art GPU based library, and show
quantitative and qualitative performance of the method.
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Figure 4. Comparison results on example images (columns 1,2) of the the Pseudoflow based method of [8] (columns 3,4) and the discrimi-
native clustering approach of [10] (columns 5,6), with segmentation from RW-based cosegmentation (columns 7,8).

Figure 5. Interactive segmentation results using the multi-image model across five images from the “Kendo” set of iCoseg. As the number
of images increases, less user input is required, as seen by the lack of such for the middle image.

Our Method [10]
Airshow (8/21) 99.7 80.5
Alaskan bear (5/18) 92.2 76.6
Christ (6/14) 95.6 97.3
Ferrari (4/10) 96.4 59.4
Goose (13/31) 97.3 97.5
Helicopter (9/11) 96.9 98.1
Kendo (10/31) 91.4 93.4
Lobster Kite (4/11) 97.0 88.5
Monk (4/17) 83.3 87.1
Soccer (5/36) 93.9 79.9
Speed Skater (9/13) 80.8 77.3
Liberty (11/41) 93.2 86.1

Table 1. Segmentation accuracy for some iCoseg image sets. Subsets were chosen which have similar appearance under a histogram model.
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Figure 6. Columns (1–2): Input images; Columns (3–4) segmentation potentials from independent random walker runs on the two im-
ages; Columns (5–6) Segmentation potentials from Random Walker based cosegmentation. Note that the object boundaries have become
significantly more pronounced because of the histogram constraint.

Figure 7. Segmentation using correspondences from optical flow on video sequence from [24]. Shows outline of segmented foreground in
red, with foreground and background indications. Our algorithm achieves 99.3% accuracy.
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