Implementing Database Security

CS 838 Information Security
Professor Somesh Jha

Computer Sciences Department

University of Wisconsin - Madison

May 14, 2001
Jerry Champeau

Mamadou Diallo

Olga Tikhonova

Table Of Contents

3Abstract

31
Introduction

32
Background

53
Database Access Control Models

53.1
Discretionary Access Control (DAC) Model

53.2
Mandatory Access Control (MAC) Model

53.3
Role-based Access Control (RBAC) Model

63.4
Other Access Control Models

64
Mock-up Database Application

75
Web Server Component

85.1
Architecture of Database-backed Web Servers

85.2
Security Concerns from the Client's Perspective

85.2.1
Webware Security Models

95.2.2
Discussion

95.3
Security Concerns from the Server's Perspective

95.3.1
Firewalls

105.3.2
Firewall Topology

136
Database Component

136.1
Case Study: The EERSS Revisited

146.1.1
Developing a Sample Security Application

156.1.2
Views

166.1.3
Stored Procedures

176.1.4
Roles

186.1.5
Developing an Audit Plan

186.1.6
Triggers

197
Attacks on Databases

197.1
Insider Threat

207.2
Login Attacks

207.3
Network attacks

207.4
Inference Control

207.5
Trojan Horses

217.6
Covert Channels

217.6.1
Covert Channel Noise

217.6.2
Handling of Covert Channels

217.6.3
Covert Channel Example with the EERSS

228
Conclusion

239
References

Abstract

In this paper, we explore different areas of database systems security and their implementation. We give an overview of database access control models and database client-server architectures. We present a sample database application that uses Oracle server accessed via the Web. We cover each of the application’s components (its clients, its Web server and its back-end database) security implementations–such as firewalls–and possible security threats in detail. We end our paper with the coverage of general attacks on databases and their prevention.

1 Introduction

Within the past decade, the growth of the Database industry and the Internet has revolutionized the way many people interact with information. This rapid proliferation and the cost effectiveness of new key technologies are creating large opportunities for developing large-scale distributed applications. These systems are made up of several interacting components, each of which is pretty much well encapsulated. However, this phenomenal growth has also brought about security concerns since some of the data now being made available on the Internet is sensitive. For example eCommerce, the leading Web-based application, is projected to exceeding $1 trillion over the next several years [1]. Ensuring, for example, that customers credit cards are not stolen and posted on a hacker's website, is not the least a daunting task, given the scale and heterogeneity of the Internet.

The strong need for information security is attributed to several factors, including: the availability of sensitive information stored in corporations and governments databases to the outside world; the ease with which malicious code can be distributed by ill-intentioned people via automation (for example, reading a victim's address book and propagating viruses automatically to all addresses in the book); the ease with which computer crimes are perpetrated anonymously from across geographic boundaries; and the general lack of forensic evidence in computer crimes, which makes the detection and prosecution of criminals difficult.

In the remainder of this paper, we give a general background of database architectures and security goals in the next section. We cover access control models in section 3. Section 4 introduces our sample database application. We cover the Web server component in section 5 and the database component in section 6. We discuss general attacks on databases in section 7. We finally give a general conclusion of our work.

2 Background

As computing has evolved, different ways of transferring data between database systems and users have also evolved. There are now three common architectures for database-backed systems.

1. A direct connection to a computer on which all work is performed

2. A client/server (two-tier) architecture

3. A thin client (three-tier) architecture

In the first approach, the database software, database(s), application code, and everything else is housed locally on one machine, as depicted below.

[image: image1.png]“Dund”
Temninal Database Server

Figure 1: direct connection to database server

In the second approach, the database software and the database(s) are placed on one platform and the application code is placed on a client or personal computer. In this scenario, queries are carried to the server and data is carried back to the PC by a special querying program, such as Oracle’s SQL*Net product. Part of the processing is done on the database server, and part is done on the workstation. The latter mostly includes managing the display and user interface, and application processing that is independent of the database. This second architecture is depicted below.

[image: image2.png]Cliant

Cliant

Cliant

Hetwork

i

Datdbase Server

Figure 2: client/server architecture
The latest type of architecture uses a low-capacity workstation as the first tier. This workstation does not actually run the application but only manages displaying the GUI and accepting input from users. It may do more processing by downloading code into the client. The second tier is the Application Server, which holds and executes the applications using some programming language to communicate with the workstations. The applications executing on this server communicate with the database server, the third tier, using the protocols of the database. In terms of security, the three-tier architecture is useful in many ways. It enables minimal security requirements on the client side, higher security requirements on the application server, and varying amounts of security requirements on the back end database servers.

[image: image3.png]Netwark

Cliant

Worketation
Displey

Cliant

Displey

Worksation
Displey

Workstation

i

Application Server

Netwark

i

Datdbase Server

Figure 3: thin-client architecture

In general, the goals of database security are:

· Secrecy and confidentiality: Data should not be disclosed to anyone not authorized to access it.

· Accuracy, integrity, and authenticity: Accuracy and integrity mean that data cannot be maliciously or accidentally corrupted or modified. Authenticity is a variant of this concept; it provides a way to verify the origin of the data.

· Availability and recoverability: Systems keep working, and data can be recovered efficiently and completely in case of loss.

We discuss next how access control models address these goals.

3 Database Access Control Models

Access control models were developed to primarily address the issues of data availability, secrecy, and confidentiality. These models can be classified as either traditional or recent. Traditional access control models are broadly categorized as discretionary access control (DAC) and mandatory access control (MAC) models [8]. Newer models comprise mechanisms such as role-based access control (RBAC) or task-based access control (TBAC). These mechanisms address the security requirements of a wider range of applications. We briefly highlight the main differences among these models in the sections below.

3.1 Discretionary Access Control (DAC) Model

Discretionary access control is based on the concept of access rights (or privileges) to data objects, and mechanisms (such as SQL GRANT and REVOKE statements) for giving subjects such privileges. A privilege allows a subject to access some data object in a certain manner (e.g., reading and writing the data). All the subjects and objects in the system are enumerated and the access authorization rules for each subject and object are specified. Subjects can be users, groups, or processes that act on behalf of other subjects. If a subject owns an object, the subject is authorized to grant or revoke access rights on the object to other subjects at his or her discretion. DAC policies are flexible and the most widely used for Web-based applications. However, these policies do not provide high security assurance. For example, DAC allows copying of data from one object to another, which can result in allowing access to a copy of data to a user who does not have access to the original data.

3.2 Mandatory Access Control (MAC) Model

Mandatory access control is based on system-wide policies that cannot be changed by individual users. In this model, each data object is assigned a security class, and each user is assigned clearance for a security class, and rules are imposed on reading and writing of database objects by users. An important goal of this model is to control information flow in order to ensure confidentiality and integrity of the information, which is not addressed by DAC models. For example, to ensure information confidentiality in Defense applications, a MAC model can be implemented using a multilevel security mechanism that uses no read-up and no write-down rules, also known as Bell-LaPadula restrictions[9]. These rules are designed to ensure that information does not flow from a higher sensitivity level to a lower sensitivity level. To achieve information integrity, the access rules are formulated as no-read-down and no-write-up. The goal in this case is not to allow the flow of low integrity information to high integrity objects.

Unlike the DAC model, the MAC model provides more robust protection mechanisms for data, and deals with more specific security requirements, such as information flow control policy. However, enforcement of MAC policies is often a difficult task, and in particular for Web-based applications, they do not provide viable solutions because they lack adequate flexibility.

3.3 Role-based Access Control (RBAC) Model

Role-based access control (RBAC) models are receiving increasing attention as a generalized approach to access control because they provide several well-recognized advantages over more traditional ACLs. They have been discussed in details in [4] and in [7] and have, in fact, been formalized by NIST. Since roles are derived from a user's responsibilities and functions within an organization, a role-based model directly supports arbitrary, organization-specific security policies. ACLs on the contrary are tied to particular objects and their maintenance can turn out to be a nightmare for system administrators.

Another advantage of RBAC models is their independence from set policies (i.e., they are policy-neutral) in the sense that using role hierarchies and constraints, a wide range of security policies can be implemented, including traditional DAC and MAC, as well as user-specific ones. Administration is also greatly simplified by the use of roles to organize access privileges. For example, if a user moves to a new function within the organization, the user can simply be assigned to the new role and removed from the old one, whereas in the absence of an RBAC model, the user's old privileges would have to be individually revoked, and new privileges would have to be granted.

3.4 Other Access Control Models

Other newer and lesser known models include models for Tasks and Workflows for task-intensive and workflow-based systems (typically, most heavily used Web servers fall into this category). These, unlike the previous models, which are all based on the subject-object paradigm, are tailored specifically for content-based information and security policies for task and transaction intensive Web servers. To address the security issues related to task-oriented systems and to effectively serve the unique needs of such systems, researchers in [10] propose a family of task-based access control (TBAC) models that constitutes four models arranged in the form of a hierarchy. The TBAC0 model represents the base model that provides the basic or the minimum facilities, such as tasks, authorization steps, and their dependencies. The TBAC1 model is an extension of TBAC0 that includes the composite authorizations of two or more authorization steps. The TBAC2 model is another extension of TBAC0 that allows both static and dynamic constraints. The TBAC3 model is a consolidated model that has features of both the TBAC1 and TBAC2 models.

The second type includes Agent-based approaches. An agent is basically a process that can be characterized by adaptation, cooperation, autonomy, and mobility. This paradigm can be effectively used to provide security features for Web applications. Some agent communication language can be used to negotiate policies during conflicts for secure interoperation among participating policy domains. Agents can be assigned security enforcement tasks at the servers and client machines. Although mobility and adaptability are essential to the efficient use of Internet resources, they pose several security threats. For example, an agent can engage in malicious behavior, thus disrupting normal operation of the host. Similarly, a host may be able to affect the activity of an agent by denying required access to local information resources.

The last type is known as PKIs or Public-Key Infrastructures. This technology is maturing, and the use of PKI certificates is expected to be ubiquitous in the near future. Certificates issued by a PKI facility can be used for enforcing access control in the Web environment. An example is the use of an extended X.509 certificate that carries role information about a user. A certification authority, which acts as a trust center in the global Web environment, issues these certificates. The use of public-key certificates is suitable for simple applications. These techniques can be used to either support a host's access control method by carrying access control information or provide a separate access control mechanism based on trust centers.

4 Mock-up Database Application

We have developed a sample database application that we use throughout this paper as a real-world model of database security implementation. Our fictitious company is named the Acme Corporation. We used Oracle Server as our database server, with a Web-based user access. The sample application is an Employee Expense Reimbursement Submission System or EERSS. First let’s look at a high-level view of the system’s operation:

Functional Requirements for Acme’s employees:

· The Acme Corporation allows all of its employees to submit requests for expense reimbursement electronically.

· Once the request is submitted, it has to be approved by the employee’s manager before the Payroll department can process it.

· An employee’s manager needs to have electronic access to all of her group employee reimbursement requests in order to approve them.

· Each employee can review her requests for reimbursement submitted in the past.

· An employee can only make changes to a submitted reimbursement request before the Payroll department processes it. When changes are made, a new managerial approval is required.

· An employee cannot access other employees’ requests for reimbursement.

· A manager doesn’t have access to other groups’ employees’ reimbursement requests.
· Any employee who is currently away from the office, e.g. on a business trip, should have remote access to the system as well.

Functional Requirements for Acme’s Clients:
· Some of the reimbursement requests are to be paid by Acme’s outside clients. Thus, the outside clients should have remote access to the EERSS to view the requests submitted by the employees who worked for them.
· Outside clients can only view the requests submitted by the employees who worked for them.
· Outside clients have a read-only access to the system.
In the remainder of this paper, we present the general development steps for this application. Note that all the participants in the EERSS use the thin-client architecture to access the database (see section 2). Nobody except the DBA can access the database directly. The Acme Corporation uses a Web-based application for access to the EERSS because many company employees as well as outside clients access the system remotely. In this case all employees and outside clients can use their Web browsers to access the system.

[image: image4.png]> = SQL.WD

CGIENGINEcr DATA DATABASE
I4VA SERVLET SERVER.

REMOTE CLIENT

FIREWALL

Figure 4: EERSS architecture

5 Web Server Component

In this section of our discussion, we propose to look further into possible security threats at different layers of the previously described sample application and what researchers at both academic institutions and in industry have proposed as solutions to those threats. Specifically, we will describe the Web architecture in order to identify the different places where security might be of a concern; explore security concerns from both the client's and the server's perspectives, before describing what measures are taken to address these concerns. We will not focus our discussion on the security of the transmission channels (network security) nor on the application of basic security measures such as user name/password mechanisms, and different data encryption techniques. These have been extensively covered in the literature.

In each of the following sub-sections, we will investigate both advantages and disadvantages of the proposed countermeasures. Finally, whenever we use the terms “Web” or “Web server”, there should be an understanding that the back-end is actually a database server, as depicted in figure 4 above.

5.1 Architecture of Database-backed Web Servers

Most Web servers today, instead of maintaining flat files (such plain text or HTML files) that are directly accessed by clients, store their data in a database management system, such as Oracle in our sample application. This architecture not only encapsulates how the data is stored, but also allows the data representation to be changed easily without affecting clients; queries to be optimized; and hosting thousands of clients at the same time. The highest link in the architecture is an HTTP or XML enabled Web browser running on the client side. Between the client and the database residing on the server, another component loosely referred to as the “Web server” serves the client's requests (translated to SQL queries if necessary) by passing them to the database and returning the formatted result appropriately to the client (see figure 4 above). In addition, a CGI engine may be added to support legacy databases, or Java Servlets or CORBA brokers in more recent databases. Apache is such a Web server. These days, connections are generally made via TCP sockets even if both the client and the server are running on the same computer.

5.2 Security Concerns from the Client's Perspective

Though this paper as a whole focuses on database security, for the sake of completeness, we thought it right to include some of the security issues faced by clients connected to database-backed Web servers (or Web servers in general, for that matter), and some of the proposed solutions to these issues. For example, what kinds of security concerns are Acme’s clients faced with, when accessing Acme’s database server. This section discusses these client concerns.

Suppose for the time being that in our case study, the Acme Corporation is actually a popular website open to anyone. People access it to browse the Web and perhaps purchase items through its portal (a setting similar to, say, Yahoo!). In such a Web environment, clients are exposed to several security and privacy risks when using Acme’s services. For one, browser vulnerabilities can be exploited by an attacker impersonating Acme, thereby compromising the security of Web clients. One such browser vulnerability was presented to peer students here at the university, where MS IE 4.0 or higher executed arbitrary code as ActiveX controls in conjunction with MS Access (a "Database Application"), potentially causing serious damage. Furthermore, if Acme turns out to be a user profiling company, information such as user login or machine name can be collected, stored in its databases and used to outline clients, thus raising serious privacy concerns. Worst yet, users’ sensitive information such as address, telephone number, age, and even social security number could then be obtained from Acme for a fee. Cookies, the data stored on the client's machine and exchanged between the Web client and the server to maintain connection information, can be used for the purpose of gathering such information.

Small executables (termed Webware) such as Java applets and ActiveX controls that can be run from Web browsers at the client site constitute also another source of exposure. This is made so because these, though small in size, are programs and require access to some system resources such as memory and stack space in order to run. Some can even make calls to the underlying Operating System, spawn a shell, create temporary files, and so on. In order to help alleviate this stance, current improvements have been implemented, for instance in Java 2, where the client can request certain applets to be digitally signed by a trusted third party. To address in a more general approach these client concerns, the following two security models have been proposed in [2].

5.2.1 Webware Security Models

The two most popular ways of circumventing security issues on clients in a Web environment have been the all-or-nothing model and the containment model. On one hand, the all-or-nothing model is a paradigm in which the client either accepts to download small executables (Webware) and allows them complete freedom of execution, or rejects them altogether. Microsoft's ActiveX and Netscape plug-ins are two proponents of the all-or-nothing model. It goes without saying that this approach is utterly rigid and gives no room for compromise. Fortunately, the recent development of digital signatures is helping in the sense that the client can require Webware to be now signed by a trusted third party, attesting to the non-maliciousness of the code about to be downloaded. Similarly, research in the area of Code Inspection is currently being conducted, allowing processes running on the client side to inspect Java byte code for example before being executed.

The containment model, on the other hand, is a paradigm in which the designers of the downloaded program deliberately restrict the execution scope of their programs to avoid potential damage to clients. This model is also known as Sand-boxing. Examples of this model include Java applets, which are severely restricted on what they can do on the client's system.

5.2.2 Discussion

Both of these models have problems. The all-or-nothing model is probably the hardest to deal with: it puts too much unnecessary pressure on the users, who are constantly asked whether or not they want to download and execute Webware in their browsers. As already mentioned in the previous section, the user is pinned to choosing between two extremes: reject the program outright even if it is harmless and could have lead to a richer browsing experience, or give the program free rein to potentially damage the user's system beyond repair. The main problem with the containment model, on the other hand is its complexity. Insuring that a program does not breach security of a client system while still providing functionality is not an easy task. In Java, for example, several flaws in both design and implementation have been found, leading to the possibility of serious security breaches [2]. Though all of the known problems have been fixed as of this writing, there is no guarantee more problems won't be found.

Another problem with the containment model is its harsh constraint. Java, for example, prohibits downloaded programs from accessing local files. Though this prevents downloaded programs from inflicting damage to the client system, it also makes more legitimate tasks such as document-editing programs impossible. Digital signatures can be used for added flexibility, whereby the user permits the program to access some of the local resources after ascertaining its non-maliciousness from trusted third parties such as VeriSign. It is interesting to note that this added flexibility can lead to the same problems faced by the all-or-nothing model.

5.3 Security Concerns from the Server's Perspective

On the other end of the Web realm, serious concerns also exist pertaining to Acme’s database servers. Some of the potential problems faced by Web administrators are, for example, how to provide exactly the necessary information without compromising existing data (secrecy and confidentiality). In conjunction with this concern, how can access be denied to unauthorized users? Most importantly, how does the Acme Corporation in our case study ensure that monetary information about its clients cannot be figured or found out? How can one ensure that the database server will always be up and running say, for example, 99.999% of the time, regardless of successful attacks on the server (availability)? These are certainly tough issues and one of the most popular security measures to address some of these is the firewall. We investigate firewalls in the next section.

5.3.1 Firewalls

A firewall is typically a piece of hardware (a router) behind which database servers reside. Any solicitation to the database has to go through this hardware before it is either denied or granted access. It attempts to guarantee that only authorized clients can access the server. Although firewalls can go a long way toward protecting organizations against the threat of intrusion from the Internet, they are not an all inclusive solution to Web security. For instance, they do not protect against infiltration, since some legitimate request could also be used to cause damage. Once an outsider is successful in infiltrating a system, firewalls typically provide no protection for internal resources. For instance, the employees at Acme’s client corporations are allowed to access some of Acme’s resources. If any of them becomes disgruntled against Acme, they could certainly mount attacks on these resources. Moreover, firewalls do not protect against security violations from insiders, such as Acme’s own employees. Most security experts believe that insiders are responsible for a vast majority of computer crimes. A joint study on computer crimes conducted by the Computer Security Institute (CSI) and the FBI indicates that the most serious losses in enterprises occur through unauthorized access by insiders, and 71% of respondents had detected unauthorized access by insiders [3].

5.3.2 Firewall Topology

Quite a few topologies have been proposed in setting up firewalls. These vary in their security models and complexity from the simplest to the most complex. Following are the most popular topologies currently in use, especially in corporations. These have been discussed in more details in [5].

The most basic firewall topology is the Basic Border Firewall. In this architecture, the firewall is a single host interconnecting a corporation's internal network (its Intranet or Private Network) and some untrusted network, typically the Internet. In this configuration, the single host provides all firewall functions.

[image: image5.png]Intenet

Firewall Private Network

Figure 5: BASIC FIREWALL TOPOLOGY - Only authorized traffic gets through to the private network.
The second topology builds on the basic border firewall by adding to it a host that resides on an untrusted network, outside the firewall. This topology is referred to as Untrustworthy Host. This host is minimally configured and carefully managed to be as secure as possible. The firewall is configured to require incoming and outgoing traffic to go through the untrusted host. The host is referred to as untrustworthy because it cannot be protected by the firewall; therefore, hosts on the trusted networks can place only limited trust in it.

[image: image6.png]Intenet

Untrust
worthy

Host

Fiewall

Private Network

Figure 6: UNTRUSTWORTHY-HOST FIREWALL TOPOLOGY - Both in-coming and out-going traffic have to go through the untrustworthy host.
The third type of firewall topology is referred to as a DMZ (De-Militarized Zone) network. In a DMZ network, the untrusted host is brought within the firewall, but placed on a network by itself. The firewall host then interconnects three networks: the Intranet, the host, and the Internet at large. This increases the security, reliability, and availability of the untrusted host, but it still does not increase the level of trust that other inside hosts have for it.

[image: image7.png]DMZ
ek hic
hoa

Fiewall Private Network

Figure 7: DMZ FIREWALL TOPOLOGY - The traffic pattern is the same as in the untrustworthy topology; only, the untrustworthy host is brought within the firewall.

Finally, the last firewall topology is referred to as a Dual Firewall. In this architecture, the organization's Intranet is further isolated from the untrustworthy network by adding a second firewall host. By connecting the untrustworthy network to one firewall host, the organization's Intranet to the other, and the DMZ in between, traffic between the internal network and the Internet must traverse two firewalls and the DMZ before reaching the Intranet.

[image: image8.png]Private Network

Outer Firewall Tnner Firewall

Figure 8: DUAL FIREWALL TOPOLOGY - The untrustworthy host is enclosed within two firewalls, hence making it more secure.

In each of these architectures, firewalls are used to control access at the border of a network mainly for the purpose of protecting a corporation's Intranet from other untrusted networks. Firewalls deployed entirely within an Intranet can also be used to provide mutual protection among the Intranet's sub components. Controlling access among these subnets is no different than controlling access between a corporation's Intranet and the Internet, so all of the above architectures can be used as internal firewall architectures as well.

6 Database Component
There are many steps to securing Acme’s systems and data. One of the first is to develop a security policy and a security plan. A security policy identifies the rules to follow to maintain security in a system and usually is included within a security plan. A security plan is a description of how these rules will be implemented. Both security policy and plan need to be re-examined on a periodic basis to ensure the currency and compatibility of the system security implementation.

6.1 Case Study: The EERSS Revisited

To start developing a security plan a team of people needs to be assembled. The goal of this process is to include enough people to ensure that all areas of corporate (or departmental if the policy will be in effect within some department only) needs are met. Members of the team might include the system administrator, the database administrator, one or more application owners, and a management person. The first task of the team is to identify overall requirements of the organization in regard to database security. The key components of the requirements list might include:

· Form and style of authorization required to initiate the creation of an account

· How to and who will create user accounts on the operating system, within each application, and within the databases

· Convention for usernames and passwords

· Enabling of password aging

· Access requirements on an application-by-application basis

· User tracking

· Handling of sensitive information

· Penalties in case of security breaches

· Forms of backups to be implemented

· Recovery procedures to be used

· Database availability

· Type of auditing required, how and by whom it will be performed

The team has to decide on what types of account are to be used in the system. Generally, there are three possible types to choose from: Administrator accounts, Application Schema (User) accounts, and General User accounts. Administrator accounts are those used for database administration. In a large company there could be several people acting as administrators for specific areas. In this case there may be one or more accounts that will need to be established for various administrative tasks, i.e. Security Manager, Application Manager, Network Manager, etc. When Oracle creates a schema for storing application objects, it actually creates a form of User account, which will probably require more privileges than a general user account. This justifies the need for a separate Application Schema account type. The team will also need to determine the mechanism for creating new accounts.

The team will also need to come up with the naming conventions for roles and views, who will be permitted to create them, who can grant access to which views, and so on. The next step, and a very important one, is to develop standards for Acme’s employees. The questions to ask here are: What privileges do particular employees need? What changes in employee privileges need to be made when she changes positions? How to best handle terminated employees? How to discipline “curious” employees? This is just a summary of some of the topics needed to be included into the security plan. It is important to remember that both policy and plan need to be re-visited periodically and checked for any necessary updates.

6.1.1 Developing a Sample Security Application

Our sample application – EERSS – uses the following tables:

· Employee_BT

· Dept_Manager_BT

· Reim_Request_BT

· Client_BT

· Client_Project_BT

· Various lookup tables

The Employee_BT table contains the information about all employees of the company. The primary key of the table is EmployeeId. DeptId is the foreign key of the Dept_Manager_BT table’s DepartmentId field. A record in the Employee has the following fields:

	EmployeeId
	EmployeeName
	Title
	EmpDBName
	HireDate
	DeptId

The Dept_Manager_BT table contains the information about the departments and their managers. The primary key of the table is DepartmentId. ManagerId is the foreign key of the Employee_BT table’s EmployeeId field.

	DepartmentId
	DepartmentName
	ManagerId

The Reim_Request_BT table contains the information about employees’ reimbursement requests. The primary key of this table is (RequestId, EmployeeId). ApprovedById is the foreign key of the Employee_BT table’s EmployeeId field. Note that if the ProjectId field for a particular request record is blank, then this request is to be paid by the Acme Corporation. If ProjectId contains the project identifier, then this employee worked on a project at a client site, and the client is responsible for the payment.

	RequestId
	EmployeeId
	RequestDate
	ApprovedById
	Sum
	RequestPaid
	ProjectId

The Client_BT table contains the information about Acme’s clients. The primary key of this table is ClientId.

	ClientId
	ClientName
	ClientAddress

The Client_Project_BT table captures information about the projects performed at client sites, and employees who work on these projects. ClientId is the foreign key of the Client_BT table’s ClientId field. EmployeeId is the foreign key of the Employee_BT table’s EmployeeId field.

	ProjectId
	ClientId
	EmployeeId

Note that all table tables end with ‘_BT’. This is part of the naming convention strategy that we adopted. ‘_BT’ identifies these database entities as base tables. Only the DBA should have access to these.

6.1.2 Views

A view is a description of how data is to be retrieved from the underlying tables. It does not store data but it is treated as though if it were a table in SQL statements. Views are used to perform the following actions:

· Limit the rows accessible to a user (row-level security)

· Limit specific columns accessible to a user (column-level security)

· Pre-join several tables (removing the requirement that the user understand the complexity of joining tables)

The views used in the EERSS are for row-level security. Views help to achieve the first goal of database security – secrecy and confidentiality.

EERSS uses the following views:

· Employee_Reim_Requests_V

· Client_Reim_Requests_V

Having ‘_V’ in the view name identifies this database entity as a view.

The Employee_Reim_Requests_V View
Each employee is only allowed to see her reimbursement requests. Managers can see all requests submitted by all employees in their group.

CREATE OR REPLACE VIEW Employee_Reim_Requests_V AS

SELECT rr.*

FROM Reim_Request_BT rr, Employee_BT e

WHERE rr.EmployeeId = e.EmployeeId

 AND e.EmpDBName = user

UNION

SELECT rr.*

FROM Reim_Request_BT rr, Employee_BT e, Dept_Manager_BT dm

WHERE rr.ApprovedBy = dm.ManagerId

AND rr.EmployeeId = e.EmployeeId

AND e.DeptId = dm.DepartmentId

AND dm.ManagerId =

(SELECT ManagerId

FROM Dept_Manager_BT dm1, Employee_BT e1

WHERE e1.EmpDBName = user

AND e1.EmployeeId = dm1.ManagerId)

Note that the script uses the pseudo column “user”. This is one of several virtual columns available for use by anybody. The value of “user” is always the login name.

The Client_Reim_Requests_V View

Each outside client is only allowed to view the reimbursement requests submitted by employees who worked on its projects.

SELECT rr.*

FROM Reim_Request_BT rr, Client_Project_BT cp, Client_BT c

WHERE rr.ProjectId = cp.ProjectId

AND cp.ClientId = c.ClientId

AND cp.EmployeeId = rr.EmployeeId

AND c.ClientDBName = user

6.1.3 Stored Procedures

A stored procedure is a program written in SQL that is stored in a compiled form within the database. Stored procedures can optionally take arguments and/or return values. They can be used to perform table updates as well as retrieve data from tables. Table triggers, applications, or users can execute stored procedures. Stored procedures are usually written and owned by the DBA. It is important to understand the relationship between the owner of a stored procedure and the user who executes the procedure. In general, stored procedures execute on behalf of the user, but use the privileges of the creator. For example, suppose mary is the Employee_BT owner and the creator of the Employee_SP stored procedure. Employee_SP when executed modifies the entries in the Employee_BT table. If the user ed, who does not have privileges on mary’s employee table, executes the stored procedure, it will succeed and update a record in the employee table. The Oracle database knows that mary could perform updates to the employee table and carries that privilege over to ed. However, privileges granted via roles are not understood by stored procedures. The DBA cannot grant privileges to a role, grant that role to a user, and have the user successfully run the stored procedure with access determined by the role privileges. The best approach is for the schema owner (usually the DBA) to own all stored procedures.

Stored procedures used in EERSS guarantee that system users can perform certain actions (or certain sequence of actions) only. Thus they help to achieve the second goal of database security – data accuracy and integrity. The following stored procedures are used by the EERSS:

· Create_New_Request_SP

· Update_Request_SP

· Approve_Request_SP

The Create_New_Request_SP stored procedure
This stored procedure validates the information submitted by the employee such as the project id (if there is one) and the format of the sum. The stored procedure also generates the new request id, calculates the date of the request, and matches the employee id with the login submitted by the employee. Because it is a new request, the ApprovedById field is blank, and RequestPaid is set to ‘N’.

PROCEDURE CREATE_NEW_REQUEST_SP

-- Params: newSum - sum of the request, projID - projectId, equals 0 if no associated project id
(newSum IN NUMBER, projID IN NUMBER, returnStatus OUT VARCHAR2)

IS

newID NUMBER;

empID NUMBER;

empprojID NUMBER;

projCount NUMBER;

BEGIN

-- find EmployeeId from Employee_BT table based on user login
SELECT EmployeeId INTO empID FROM Employee_BT

WHERE EmpDBName = 'test';

IF empID IS NULL THEN

SELECT StatusTitle INTO returnStatus FROM QueryStatus

WHERE StatusId = 1;

ELSE

-- If there is a project id, then validate that this employee worked on this project

 IF projID <> 0 THEN

 SELECT count(*) INTO projCount FROM Client_Project_BT

WHERE ProjectId = ProjID AND EmployeeId = empID;

 IF projCount = 0 THEN

SELECT StatusTitle INTO returnStatus FROM QueryStatus

WHERE StatusId = 2;

END IF;

END IF;

 -- generate new RequestId

 SELECT Reim_Request_Seq.nextval INTO newId FROM dual;

-- insert new request

 INSERT INTO Reim_Request_BT

 (RequestId, EmployeeId, RequestDate, RequestSum, RequestPaid, ProjectId)

VALUES

 (newID, empID, sysdate, newSum, 'N', projID);

 COMMIT;

SELECT StatusTitle INTO returnStatus FROM QueryStatus

WHERE StatusId = 0;

END IF;

END;

The Update_Request_SP stored procedure

This stored procedure validates that the request has not been reimbursed yet (if so, the update is rejected) and, if the request has been approved, then it sets the ApprovedById field back to blank field. This is done to guarantee that the updated request will not be reimbursed before the employee’s manager approves the updated sum of the request. The rest of the validation is the same as in the Create_New_Request_SP stored procedure.

The Approve_Request_SP stored procedure

This stored procedure validates that the current user is indeed the employee’s manager. If so, the ApprovedById field is set to the manager’s employee id.

Note that all stored procedure names end with ‘_SP’. This again is part of the naming convention strategy adopted by the database development group.

6.1.4 Roles

A Database role is a group of privileges or objects that can be used to pass one or more privileges to one or more users. To control the levels of access different users with their corresponding user accounts will have in the EERSS, the specific privileges for each object have to be identified. Database roles have to associate these privileges with specific roles. First a set of roles has to be created.

CREATE ROLE sysgenaccess;

GRANT create session to sysgenaccess;

CREATE ROLE sysadminuser;

GRANT create session to sysadminuser;

CREATE ROLE syspayroll;

GRANT create session to syspayroll;

Two types of grants will be made. First, roles are given table access, i.e.

GRANT select ON Employee_Reim_Requests_V TO sysgenaccess;

GRANT select ON Client_Reim_Requests_V TO sysgenaccess;

GRANT select, insert, update ON Employee_BT TO sysadminuser;

GRANT execute ON Create_New_Request_SP TO sysadminuser;

GRANT select, insert, update ON Reim_Requests_BT TO syspayroll;

Then the roles are granted to the users.

GRANT sysgenaccess to olga;

GRANT syspayroll to peter;
When a role is granted to a user, it becomes one of that user’s default roles and is enabled at login time.

6.1.5 Developing an Audit Plan

Database auditing is the monitoring and recording of activities occurring within a database. Usually there are two main reasons for auditing:

· Security auditing – to determine if someone is attempting to break into your system

· Performance auditing – to determine why the system is slow

When it is determined that auditing is needed, the next step is to decide where the audit information will be stored. The operating system usually can support an audit trail stored outside the database. Two INIT.ORA parameters control the auditing actions: AUDIT_FILE_DEST that specifies the location of the audit trail file, and AUDIT_TRAIL that is an audit enabled/disabled flag. In addition, the system-wide auditing can be enabled; in this case the results will be stored in the SYS.AUD$ table in the SYS schema of the database. Oracle supplies several views against the SYS.AUD$ table to make viewing of the audit information easier. In Oracle 8.0.4, there are 121 separate types of auditing that can be performed. The DBA can run the query “select * from AUDIT_ACTIONS” to display the complete list of audit actions. The default auditing options that can be taken against an object are normally activated with the clause WHENEVER SUCCESSFUL or WHENEVER UNSUCCESSFUL. For example, the command to enable auditing when the user mary successfully modifies a value in a table would look like this:

AUDIT UPDATE BY mary BY SESSION WHENEVER SUCCESSFUL;

It is obvious that Oracle provides many ways to track information about modifications that have been made to the database objects – at the object level. However it is usually not easy to keep track of actions that have been performed on specific rows within a table. For this, a customized, trigger-based application needs to be developed.

6.1.6 Triggers

Triggers are stored programs that are associated with a table. A trigger is executed when the event on which it is based occurs. The events that will “fire” a trigger are commands that perform INSERT, UPDATE, or DELETE actions. As an example, let us say that the DBA of the Acme Corporation decides to track the updates to the Reim_Requests_BT table, specifically the updates to the ApprovedById field of this table. In this case the trigger script would start like this:

CREATE OR REPLACE TRIGGER req_audit

AFTER UPDATE OF

ApprovedById

ON Reim_Requests_BT

FOR EACH ROW

-- rest of the script

Backing Up and Recovering the Database.

Even with rigorous security, a company can be vulnerable to data loss. One of the best approaches a company could follow is to have a backup procedure in place to help ensure that the system can be successfully recovered. There are several different forms of backups that can be performed to ensure the recovery of data to a database. They are:

· Cold backups – performed with the database shut down

· Hot backups – performed with the database up

· Logical backups – exports with the database up

· The Enterprise Backup Utility – for Oracle and UNIX version 7

· Backup set using the Recovery Manager – for Oracle 8 with the database up

· Image copy using the Recovery Manager – for Oracle 8 with the database up

Hot and cold backups make copies of database files and store them to another disk on the system or to tape. When certain database files become damaged, they can be replaced by the copies made during the backup. A cold backup, also known as image backup, is performed when the database is down and there are no active processes within the database. The backup process, referred to as a file-level copy, then copies each database file either to another disk or to tape. In the event of data loss, the database can be recovered to the condition it was in when the copy was made. When performed in conjunction with archive logging, the database can be recovered up to a “point in time”. The disadvantage of file-level copying is that it is very difficult to recover an individual table easily.

A hot backup is performed while the database remains up and running. Essentially, it performs the same actions as a cold backup, providing recovery up to a “point in time”. As with cold backups, individual tables cannot easily be recovered. Logical backups (Exports) enable to capture all of the objects owned by a particular user, or a specific table or set of tables. Unlike a hot or cold backup, which captures complete data files, an export captures random pieces of the database or a complete copy of the entire database to one compressed file. Export files allow moving or copying a database from one system to another.

We now turn to presenting more subtle attacks on databases, especially databases attached to widely accessible networks such as the Internet.

7 Attacks on Databases
Threats on database security can be grouped into two different categories, physical and logical. Physical threats consist of (but are not limited to) forced disclosure of passwords, destruction of storage devices, power failures, and theft. The most common way to prevent this type of threat is limit the access to the storage devices and put backup and recover procedures in place. Logical threats are unauthorized logical access to information. This is usually through software. Logical threats can result in denial of service, disclosure of information, and modification of data.

7.1 Insider Threat

One of the largest threats to a database is a corrupt authorized user as already discussed in section 5.3.1. This user can legitimately access confidential information. This information can then be leaked electronically or by some other means such as printout or by word of mouth. There is very little that can be done to prevent this from within the database management system. Mandatory access controls presented in section 3.2 can help a little bit by not allowing a user logged in with classified access to save or copy the data to a location with unclassified access. This type of threat is usually handled by limiting the number of users with that level of access and other complicated procedures. In our sample database application, a manager could give or sell this information to other companies or use it unfairly to determine employee performance.

7.2 Login Attacks

Another way to compromise a database is to successfully log in as a legitimate user. This can be done by physically stealing the information or monitoring network traffic for login information. Another attack could involve accessing password lists stored in an operating system. And of course, login information can only be as secure as the password used. If it is easy to crack, there is not much that can be done. Restrictions on the type and form of passwords can help, but does not solve the problem. The database must employ authentication and encryption to ensure that this type of attack is less likely. The web server could be set up to either pass the user authentication information directly to the database or authenticate the user and then use the web server’s own authentication information to login to the database. The latter method provides an optimization in that the connection can be cached. This results in an even more vulnerable system because if the web server is compromised then the database is also compromised. In our example we assumed that the web server passes the user’s authentication information to the database. Of course, protecting the user’s authentication information is important. In general, encryption or a one-time password system could be used. Also in our EERSS sample application, a manager could be watching network traffic to get an employee’s login information. The manager could make changes to the employee’s data such that it could be grounds to reprimand or even fire the employee.

7.3 Network attacks

There are a multitude of possible attacks on a database if it is accessible over a network, even more so if that network is the Internet. A number of precautions can be put in place such as a firewall to protect the database and possibly the Web server (section 5.3.1). The data sent over the network can be secured by a number of means. A common method on the Internet is the secure socket layer. This would prevent an attacker from just gathering information by watching network traffic. A good method for authenticating with the database will also be necessary. Certificates can also be used in conjunction with databases to ensure authentication. An especially common attack has been the denial of service attack. This type of attack is related more to the Web server allowing access to the database, but can also be mounted against a database itself.

7.4 Inference Control

The users of a database can use information that they have access to and possibly some other supplementary (external) information to infer information that they do not have access to. In more explicit terms, data at a high security level can be inferred from data at a lower security level. This can be a very difficult threat to prevent. This threat is usually associated with statistical databases. Information about individuals can be inferred from answers to allowed statistical queries on the data. A naive approach would be to move the lower level data to a higher level. Only the minimum amount of the lower level data needed to prevent the inference should be moved to the higher security level. Although, this usually results in much if not all of the lower level data being reclassified at a higher security level. This solution is usually not acceptable. Other techniques can be used such as query restriction, data perturbation, and output perturbation. Query restriction involves requiring a minimum number of rows to be part of the query. This does not really solve the problem but increases the number of queries necessary to infer any confidential information. A common solution is to audit such query patterns in hopes that such activity will be detected before the confidential information is compromised.

7.5 Trojan Horses

Trojan horses are corrupt software applications that leak confidential information. These applications are part of the normal use of a system, but have been modified to copy or send sensitive information to unauthorized locations or users. An application that has a Trojan Horse must be installed on the system. This could be done by the attacker or by an administrator that did not realize that there was a Trojan Horse in the application. The corrupted application will operate as expected for all practical purposes. But it will be doing some additional illegal functions as well. In relation to the EERSS example, an employee could create an application with a Trojan Horse in it. The employee could get the manager to use this application in his daily work. Unknowing to the manager, the application is copying all of the information that the manager is accessing to a location in the database that the employee has access to. Now the employee has access to information about other employees that he should not have had access to. If mandatory access controls instead of discretionary had been used this attack might have been averted. With mandatory access controls, the manager’s clearance level would not allow the classified data to be written to a lower security level for the employee to access.

7.6 Covert Channels

Lampson in his classic paper on covert channels defined them as follows: “A communication channel is covert if it is neither designed nor intended to transfer information at all” [17]. This is one of the more general definitions. One class of covert channels is called storage channels. A storage channel exists if a process directly or indirectly writes information to a storage location and another process reads that information from the storage location. Since a database “stores” data, a covert storage channel could be present. Another class, timing channels occur when one process signals another by modulating the systems resources such as CPU utilization or time, memory allocation, and any other hardware that the database must share with the system.

7.6.1 Covert Channel Noise
Covert channels can also be noiseless or noisy. A covert channel that is noiseless can transfer information (usually bit by bit) from a sender to a receiver with a probability of 1 that the receiver will get the information. If a channel is noisy, the receiver will get bits that were not sent by the sender. By using error-correcting codes the erroneous bits can be corrected and the channel becomes a noiseless channel with no reduction in bandwidth. However, it is more likely that the errors will only be detected and not corrected. In this situation, the receiver would have to ask the sender to re-send the data. This will reduce the bandwidth. Depending on how noisy the channel is, it could reduce the bandwidth to a level that is no longer considered a threat. In the example above, about CPU time, there will be quite a bit of noise when other processes are present in the database or system.

7.6.2 Handling of Covert Channels
Covert channels are handled in three ways. Eliminating the channel by re-design or re-implementation, usually by partitioning shared resources. Reducing the bandwidth of the channel by introducing noise. This usually results in system performance degradation. And finally, auditing a channel to record its use and bandwidth could act as a deterrent.

7.6.3 Covert Channel Example with the EERSS
Most covert channels are usually associated with multilevel security systems. The following is a nontraditional example of a covert channel. Consider Acme’s databases for example. A person uses a browser to access the Web site that is hosted by the Web server, which in turn accesses the databases. This Web site could be displaying a predetermined set of information from the database or it could be running queries on the database based on some input from the user. In this situation there is a potential information flow from the database to the Internet that was not intended. Information about how busy the server is could be leaked out. If the response of Acme’s Web servers is timed, the delay could indicate the current load on the database. That load may indicate a particular activity is occurring. If this activity, or even inactivity, could affect Acme’s stock price it would give the attacker an unfair advantage on the stock market. If there was a Trojan Horse on the Web server or database then specific information could be leaked. For example, a Web server is set up to allow simple queries of non-critical information. The Trojan Horse could watch for a particular query and delay the response in a predictable manner. A long delay could indicate a one and a short delay could indicate a zero. An outsider could repeat this query and gather the information bit by bit.

Most likely this type of covert channel will be very noisy. The Internet alone will introduce delays. The Web server is most likely serving other Web pages and possibly querying other databases. All of these things could affect the delay of the Web server’s response and have nothing to do with the database. This would make the first scenario about determining a particular activity from the load on the database very noisy, probably to the point that no useful information is received. But a Trojan Horse could delay a response so that to the receiver it is obvious that the delay is from the Trojan Horse and not from the Web server or Internet. One technique could be to create a very long delay that would not seem reasonable to have been caused by the Internet or a loaded Web server. This, of course, still reduces the bandwidth of the covert channel because the receiver must query the database at a slower rate.

8 Conclusion

We have presented several facets of how security implementations are carried out on databases. However, this paper was more of a restricted survey with a case study involving a database application running on Oracle server in a Web environment. There were many areas that could not be covered because that would have led to unnecessary lengthening of this paper. We focused throughout this paper on security threats on Web clients and database servers, and attacks on databases.

We found that there is no one complete solution to database security and that some issues will be hard to eliminate. Any organization that attempts to secure a database system, must consider the security of the overall environment including communication channels, user access methods, the database itself, and any applications used to access the database. A well thought-out combination of hardware and software solutions needs to be implemented to make modern database systems more secure.

Currently there are plenty of options available in terms of different database products, web servers, and network security. In addition to this, the database security needs can be drastically different between organizations. Therefore assembling an appropriate design and development team is critical for choosing the right security plan for a given organization. We do not claim that the solution we described in our paper is going to work for any organization. We described a number of available security features, so that any security team could make the right decisions for their organization.

There are a few areas that we did not discuss in this paper including encryption, user training (especially for choosing passwords), sound system configuration, and securing communication layers. These methods may be the subject of another paper.

References

1. Joshi, J., Aref, W., Ghafoor, A., and Spafford, E. Security Models for Web-based Applications Communications of the ACM, Feb. 2001

2. Felten, Edward W. Webware Security Communications of the ACM, vol. 40, No. 4, Apr. 1997

3. Power, R. Tangled Web: tales of Digital Crime from the Shadows of Cyberspace. Que/MacMillan Publishing, Aug. 31, 2000.

4. Proceedings of the fifth ACM Workshop on Role-based Access Control. Berlin, Germany, Jul. 2000

 Fithen, W., Allen, J., Stoner E. Deploying Firewalls Security Improvement Module, CMU-SEI-SIM008, May 1999

6.
 Bertino, E., Pagani, E., Rossi, G., and Samarati, P. Protecting Information on the Web

Communications of the ACM, 2000

7. Ferraiolo, D., Barkley, J., and Kuhn, R. A Role-based Access Control Model and Reference Implementation within a Corporate Intranet ACM Transactions on Information and Systems Security, Vol. 2, No. 1, Feb. 1999, pages 34-64

8. Ramakrishnan, R. Database Management Systems WCB MacGraw-Hill 1998

9. Bell, D. E. and LaPadula, L. J. Secure Computer Systems: Mathematical Foundations, Mitre Corp., Bedford, Massachusetts, 1973.

10. Thomas, R.K. and Sandhu, R.S. Task-based authorization controls (TBAC): A family of models for active and enterprise-oriented authorization management. In Proceedings of the IFIP WG11.3 Workshop on Database Security (Lake Tahoe, CA, Aug. 1997).
11. Theriault, M., Heney, W. Oracle Security, O’ Reilly 1999.

12. Baraani-Dastjerdi, A., Pieprzyk, J., Safavi-Naini, R. Security In Databases: A survey Study, University of Wollongong, February 7, 1996

13. On-line documentation for Ovrimos version 3.0 - Chapter 13 Database Security. Copyright © 2000 Ovrimos S.A.

14. Proctor, N., Neumann P. Architectural Implications of Covert Channels SRI International, Menlo Park CA Copyright 1992

15. Sandhu, R., Jajodia, S. Integrity Principles and Mechanisms in Database Management Systems George Mason University, March 12, 1991.

16. National Computer Security Center A guide to Understanding Covert Channel Analysis of Trusted Systems November 1993

17. Lampson, B. W. "A Note on the Confinement Problem", Communications of the ACM, 16:10, pp. 613-615, October 1973.

For general references on computer security, see Abrams et al. [1995], Amoroso [1994], and Denning [1982]. Texts by Castano et al. [1994] and Kaufman et al. [1995] are specific to database and network security, respectively. Security in statistical databases is covered in Denning [1982] and in the survey by Adam and Wortman [1989].

For general references on firewalls, see Firewalls and Internet Security [Cheswick 94], Building Internet Firewalls [Chapman 95], Firewalls Complete [Goncalves 98], Firewalls fend off invasions from the Net [Lodin 98], and Internet Security Policy: A Technical Guide [NIST 98]

CS838 Information Security
2 of 23
Champeau, Diallo, Tikhonova

