TCP — Connection
VManagement

Ming Liu
mgliu@cs.wisc.edu

Today

Last lecture
« TCP/UDP overview

Today

- TCP connection management

Announcements

- Lab3 due on 11/11/2021 at 11:59pm

How TCP solves the three issues of UDP

#1: Arbitrary communication

- Senders and receivers can talk to each other in any ways

#2: No reliability guarantee

- Packets can be lost/duplicated/reordered during transmission
« Checksum is not enough

#3: No resource management

« Each communication channel works as an exclusive network resource owner
- No adaptiveness support for the physical networks and applications

TCP Connection Management

#1: Arbitrary communication

- Senders and receivers can talk to each other in any ways

The Goal of Connection Management

Dynamically create and destroy a full-duplex

communication channel between a sender process and

a receiver process for reliable byte stream exchange

The Goal of Connection Management

Dynamically create and destroy a full-duplex

communication [channel between a sender process and

a receiver procdss for reliablie byte stream exchange

Why this is non-trivial?

Dynamically create and destroy a full-duplex

munication channel between a sender [process and

ceiver process for reliable byte strea

Revisit the TCP header

0 4 10 16 31
SrcPort DstPort

Acknowledgment

HdrLen 0 Flags Advertised

Checksum UrgPt

Options (variable)

Data

T

Revisit the TCP header

0 4 10 16 31
SrcPort DstPort

SequenceNum

Acknowledgment

HdrLen 0 Flags AdvertisedW

Checksum UrgPtr

Options (variable)

Data

TCP Connection Establishment

Let’s start with a naive approach

9

TCP Connection Establishment

Let’s start with a naive approach

Recelver

My (client) byte stream starts
with a sequence number = X

TCP Connection Establishment

Let’s start with a naive approach

My (client) byte stream starts

with a sequence number = X Got it, | acknowledge the sequence

number of your next byte is = X + 1

TCP Connection Establishment

Let’s start with a naive approach

My (client) byte stream starts

with a sequence number = X Got it, | acknowledge the sequence

number of your next byte is = X + 1

My (server) byte stream starts
with a sequence number = Y

TCP Connection Establishment

Let’s start with a naive approach

My (client) byte stream starts

with a sequence number = X Got it, | acknowledge the sequence

number of your next byte is = X + 1

My (server) byte stream starts
with a sequence number = Y
Got it, | acknowledge the
seqguence number of your
next byteis =Y + 1

TCP Connection Establishment

Let’s start with a naive approach

My (client) byte stream starts

with a sequence number = X Got it, | acknowledge the sequence

number of your next byte is = X + 1

My (server) byte stream starts
with a sequence number = Y

Got it, | acknowledge the
sequence number of your
next byteis =Y + 1

TCP Connection Establishment

Let’s start with a naive approach

My (client) byte stream starts

with a sequence number = X Got it, | acknowledge the sequence

number of your next byte is = X + 1

My (server) byte stream starts
with a sequence number = Y
Got it, | acknowledge the
seqguence number of your
next byteis =Y + 1

TCP Connection Establishment

Let’s start with a naive approach

My (client) byte stream starts

with a sequence number = X Got it, | acknowledge the sequence

number of your next byte is = X + 1

My (server) byte stream starts
with a sequence number = Y
Got it, | acknowledge the
seqguence number of your
next byteis =Y + 1

Three-Way Handshake

SYN, SequenceNum = X

10

Three-Way Handshake

_Client

SYN, SequenceNum = X

10

Three-Way Handshake

Recelver

10

The Incarnation Issue

A connection (defined by a particular host and port

pair) to be reused again

Solution: initial sequence number is randomly

generated

11

How to implement this?

S
YN SequenceNum = X

12

State Machine (event/action)

Client

Passive open

Server

13

State Machine (Step 1)

Client

Active open/SYN

Server

Passive open

14

State Machine (Step 2)

Client

Active open/SYN

Server

Closed

Passive open

LISTEN

SYN/SYN+ACK

15

State Machine (Step 3)

Client

Active open/SYN

SYN+ACK/ACK

ESTABLISHED

Server

Passive open

SYN/SYN+ACK

ACK

ESTABLISHED

16

TCP Connection Establishment Summary

Closed SYN Closed
'S ose
equenCeNUm - X
SYN SENT _Iv LISTEN
_ ACK, Sequencets
SYN + ’
{ = X + 1
wledgemen
ESTABLISHED| — ACKM© SYN RCVD

ESTABLISHED

17

Connection Termination

Three cases:

« Case #1: One-side closes first
- Case #2: Both sides close simultaneously
- Case #3: Both sides close simultaneously (special)

18

Case 1: One-side Closes First

4-way handshake

Active participant Passive participant

19

Case 1: One-side Closes First

4-way handshake

Active participant Passive participant

| have no more data to send.
My last sequence number = X

19

Case 1: One-side Closes First

4-way handshake

Active participant Passive participant

| have no more data to send.
My last sequence number = X

Got it, | acknowledge the sequence
number of your next byte is = X + 1

19

Case 1: One-side Closes First

4-way handshake

Active participant Passive participant

| have no more data to send.
My last sequence number = X

Got it, | acknowledge the sequence
number of your next byte is = X + 1

| also have no more data to send.
My last sequence number = Y

19

Case 1: One-side Closes First

4-way handshake

Active participant Passive participant

| have no more data to send.
My last sequence number = X

Got it, | acknowledge the sequence
number of your next byte is = X + 1

| also have no more data to send.
My last sequence number = Y
Got it, | acknowledge the
seqguence number of your
next byteis =Y + 1

19

Case 1: One-side Closes First

4-way handshake

Active participant Passive participant
|

Case 1: State Machine Transition

Client Server

ESTABLISHED ESTABLISHED

20

Case 1: State Machine Transition (Step 1)

Client Server

ESTABLISHED ESTABLISHED

/FIN

FIN_WAIT_"

21

Case 1: State Machine Transition (Step 1)

Client Server

ESTABLISHED ESTABLISHED

FINJACK

CLOSE_WAIT

Close/FIN

FIN_WAIT_"

21

Case 1: State Machine Transition (Step 2)

Client Server

ESTABLISHED ESTABLISHED

FINJACK

CLOSE_WAIT

Close/FIN

FIN_WAIT_"

FIN_WAIT_2

22

Case 1: State Machine Transition (Step 3)

Client Server

ESTABLISHED ESTABLISHED

FINJACK

CLOSE_WAIT

Close/FIN

LAST_ACK

Close/FIN

FIN_WAIT_"

FIN_WAIT_2

23

Case 1: State Machine Transition (Step 3)

Client Server

ESTABLISHED ESTABLISHED

FINJACK

CLOSE_WAIT

Close/FIN

LAST_ACK

Close/FIN

FIN_WAIT_"

FIN_WAIT_2
TIME_WAIT

23

Case 1: State Machine Transition (Step 4)

Client Server

ESTABLISHED ESTABLISHED

Close/FIN
FIN/JACK

FIN_VWAIT_1 CLOSE WAIT

FIN_WAIT_2 Close/FIN
TIME_WAIT LAST_ACK

ACK

FINJACK

CLOSED

CLOSED

24

Case 1: State Machine Transition (Step 4)

Client Server

ESTABLISHED ESTABLISHED

Close/FIN
FIN/JACK

FIN_VWAIT_1 CLOSE WAIT

FIN_WAIT_2 Close/FIN
TIME_WAIT LAST_ACK

Timeout after two ALK
segment lifetimes

FINJACK

CLOSED

CLOSED

24

TCP Connection Termination (Case1) Summary

Active participant Passive participant

ESTABLISHED ESTABLISHED

FIN SequenCeNUm - X

FIN_WAIT_1

d
FIN_WAIT_2
LAST_ACK
TIME_WAIT W

CLOSED CLOSED

25

Case 2: Both Sides Close Simultaneously

Active participant Passive participant

| have no more data to send. | also have no more data to send. My
My last sequence number = X » last sequence number = Y

Got it, | acknowledge the Got it, | acknowledge the

sequence number of your » sequence number of your

next byte is = Y+ 1 next byte is = X + 1

260

Case 2: Both Sides Close Simultaneously

Active participant Passive participant

260

Case 2: State Machine Transition (Step 1)

Client Server

ESTABLISHED ESTABLISHED

27

Case 2: State Machine Transition (Step 1)

Client Server

ESTABLISHED

ESTABLISHED

Close/FIN

FIN_WAIT_"

Close/FIN

FIN_WAIT_1

27

Case 2: State Machine Transition (Step 2)

Client Server

ESTABLISHED

ESTABLISHED

Close/FIN Close/FIN

FIN _WAIT_1 FIN _WAIT_1

28

Case 2: State Machine Transition (Step 3)

Client Server

ESTABLISHED

ESTABLISHED

Close/FIN Close/FIN

INACE FIN/ACK

ACK

29

Client

ESTABLISHED

Close/FIN

FIN_WAIT_"

FINJACK

CLOSING

ACK

TIME_WAIT

Timeout after two
segment lifetimes

CLOSED

Server

ESTABLISHED

CLOSING

ACK

CLOSED

Case 2: State Machine Transition (Step 4)

Close/FIN

FIN_WAIT_1

FINJACK

TIME_WAIT

Timeout after two

segment lifetimes
30

TCP Connection Termination (Case 2) Summary

Active participant Passive participant

ESTABLISHED ESTABLISHED

FIN_WAIT_1

-
» +1
CLOSING '

gement - CLOSING

FIN_WAIT_+

CLOSED CLOSED

31

Case 3: Both Sides Close Simultaneously, but

Active participant Passive participant

| have no more data to send. | also have no more data to send. My
My last sequence number = X » last sequence number = Y

Got it, | acknowledge the Got it, | acknowledge the

seguence number of your » seguence number of your

next byte Is = Y+ 1 next byte is = X + 1

32

Case 3: Both Sides Close Simultaneously, but

Active participant Passive participant

| have no more data to send.
My last sequence number = X

| also have no more data to send. |
acknowledge the sequence number
of your next byte is = X + 1. And my

Got it, | acknowledge the last sequence number =Y

sequence number of your
next byte is = Y+ 1

32

Case 3: Both Sides Close Simultaneously, but

Active participant Passive participant

32

Case 3: State Machine Transition

Client Server

ESTABLISHED ESTABLISHED

33

Case 3: State Machine Transition (Step 1)

Client Server

ESTABLISHED

ESTABLISHED

Close/FIN

FIN_WAIT_"

Close/FIN

FIN_WAIT_1

FINACK

34

Case 3: State Machine Transition (Step 2)

Client Server

ESTABLISHED

ESTABLISHED

Close/FIN

FIN_WAIT_"

ACK+FIN/ACK

Close/FIN

FIN WAIT 1
CLOSING FIN/JACK
ACK
TIME _WAIT C TIME WAIT

35

Case 3: State Machine Transition (Step 3)

Client Server

ESTABLISHED

ESTABLISHED

Close/FIN

FIN_WAIT_"

ACK+FIN/ACK

Close/FIN

FINIACK
ACK

Timeout after two

segment lifetimes
36

TIME_WAIT

Timeout after two
segment lifetimes

CLOSED CLOSED

TCP Connection Termination (Case 3) Summary

Active participant Passive participant

ESTABLISHED ESTABLISHED
FIN
FIN_WAIT 1 . SequenceNym .
FIN_WAIT_1
EIN, SequencelNumm= CLOSING

— 4 1
Acknow\edgement = X

TIME_WAIT

ACknOWIedgement -y
= Yiq

CLOSED CLOSED

37

TCP State Transition Diagram Overall

CLOSED

f

Passive open Close

'

LISTEN

Active open/SYN

(

SYN/SYN + AC Send/SYN
SYN RCVD |3 SYN/SYN + ACK =l SYN SENT
\ FN + ACK/ACK
Close/FIN ESTABUSHED,
' Closelw MN/ACK
FIN. WAIT 1 [° | CLOSE WAIT
FIN/ACK
ACK Close/FIN
X
FIN. WAIT 2 CLOSING LAST ACK
l ACK Timeout ?therttwo l ACK
FIN/ACK segment liiretimes

=~ TIME_WAIT *[CLOSED

TCP State Transition Diagram Overall

Active open/SYN

LISTEN

SYN/SYN ﬁ/ wsm
) SYN/SYN + ACK .
Acq SYN + ACK/ACK

Close/FIN ESTABLISHEd

SYN_RCVD SYN_SENT

Y Close/FIN FIN/ACK

FIN._WAIT 1 CLOSE_WAIT

FIN/ACK
"C}F Close/FIN

X

jACK

FIN_WAIT 2

k FIN/ACK

CLOSING LAST ACK

l ACK Timeout after two l ACK
segment lifetimes

=~ TIME_WAIT ’[CLOSED

38

TCP State Transition Diagram Overall

CLOSED
4 Active open/SYN
Passive open Close
LISTEN
SYN/SYN ﬁ/ wsm
SYN RCVD |3 SYN/SYN + ACK =l SYN SENT
ACK SYN + ACK/ACK

Close/FIN ESTABLISHEd

' cmaM QN/ACK

FIN._WAIT 1 CLOSE_WAIT

FIN/ACK
ACK Close/FIN

FIN. WAIT 2 CLOSING LAST ACK

l ACK Timeout :t:n:‘tfert.two l ACK
EIN/ACK segment lifetimes

TIME_WAIT '[CLOSED

TCP Connection Management Summary

Connection setup is asymmetric, where one side does

a passive open the other side does an active open

Connection teardown is symmetric, where each side

has to close the connection independently

Most of the states schedule a timeout, eventually

causing the segment to be present if the expected

response does not happen

40

Summary

Today

- TCP connection management

Next lecture

- TCP reliability mechanisms

41

