
Ming Liu

mgliu@cs.wisc.edu 

Introduction to Computer Networks


CS640

https://pages.cs.wisc.edu/~mgliu/CS640/F21/

TCP — Connection 
Management

1



Today

Last lecture

• TCP/UDP overview

2

Today

• TCP connection management

Announcements

• Lab3 due on 11/11/2021 at 11:59pm



How TCP solves the three issues of UDP

#1: Arbitrary communication 

• Senders and receivers can talk to each other in any ways

#2: No reliability guarantee 

• Packets can be lost/duplicated/reordered during transmission


• Checksum is not enough

#3: No resource management

• Each communication channel works as an exclusive network resource owner

• No adaptiveness support for the physical networks and applications

3



TCP Connection Management

#1: Arbitrary communication 

• Senders and receivers can talk to each other in any ways

#2: No reliability guarantee 

• Packets can be lost/duplicated/reordered during transmission


• Checksum is not enough

#3: No resource management

• Each communication channel works as an exclusive network resource owner

• No adaptiveness support for the physical networks and applications

4



The Goal of Connection Management

Dynamically create and destroy a full-duplex 
communication channel between a sender process and 
a receiver process for reliable byte stream exchange

5



The Goal of Connection Management

Dynamically create and destroy a full-duplex 
communication channel between a sender process and 
a receiver process for reliable byte stream exchange

• Connection establishment

• Connection termination

6



Why this is non-trivial?

Dynamically create and destroy a full-duplex 
communication channel between a sender process and 
a receiver process for reliable byte stream exchange

• Client <—> Server

• Client and server agree on the start of byte 
steams for two directions

• On-demand communication

7



Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

Revisit the TCP header

• If SYN flag is set, this is the initial sequence 
number. The start of a byte stream;


• If SYN flag is clear, this is the accumulated 
sequence number of the first data byte of this 
segment for the current session;

8



Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

Revisit the TCP header

• If ACK flag is set, the value of this field is the 
next sequence number that the sender of the 
ACK is expecting. This acknowledges receipt 
of all prior bytes (if any)

• The first ACK sent by each end acknowledges 
the other ends’s initial sequence number itself, 
but no data

8



TCP Connection Establishment

Let’s start with a naive approach

Client Receiver

9



TCP Connection Establishment

Let’s start with a naive approach

Client Receiver

My (client) byte stream starts 
with a sequence number = X

9



TCP Connection Establishment

Let’s start with a naive approach

Client Receiver

Got it, I acknowledge the sequence 
number of your next byte is = X + 1

My (client) byte stream starts 
with a sequence number = X

9



TCP Connection Establishment

Let’s start with a naive approach

My (client) byte stream starts 
with a sequence number = X

Client Receiver

Got it, I acknowledge the sequence 
number of your next byte is = X + 1

My (server) byte stream starts 
with a sequence number = Y

9



TCP Connection Establishment

Let’s start with a naive approach

My (client) byte stream starts 
with a sequence number = X

Client Receiver

Got it, I acknowledge the sequence 
number of your next byte is = X + 1

My (server) byte stream starts 
with a sequence number = Y

Got it, I acknowledge the 
sequence number of your 

next byte is = Y + 1

9



TCP Connection Establishment

Let’s start with a naive approach

My (client) byte stream starts 
with a sequence number = X

Client Receiver

Got it, I acknowledge the sequence 
number of your next byte is = X + 1

My (server) byte stream starts 
with a sequence number = Y

Got it, I acknowledge the 
sequence number of your 

next byte is = Y + 1
Could we optimize a little bit? 

9



TCP Connection Establishment

Let’s start with a naive approach

My (client) byte stream starts 
with a sequence number = X

Client Receiver

Got it, I acknowledge the sequence 
number of your next byte is = X + 1

My (server) byte stream starts 
with a sequence number = Y

Got it, I acknowledge the 
sequence number of your 

next byte is = Y + 1

9



TCP Connection Establishment

Let’s start with a naive approach

My (client) byte stream starts 
with a sequence number = X

Client Receiver

Got it, I acknowledge the sequence 
number of your next byte is = X + 1

My (server) byte stream starts 
with a sequence number = Y

Got it, I acknowledge the 
sequence number of your 

next byte is = Y + 1

9



Three-Way Handshake

SYN, SequenceNum = X

Client Receiver

SYN + ACK, Sequence
Num = Y

Acknowledge
ment = X + 1

ACK, Acknowledgement = Y + 1

10



Three-Way Handshake

SYN, SequenceNum = X

Client Receiver

SYN + ACK, Sequence
Num = Y

Acknowledge
ment = X + 1

ACK, Acknowledgement = Y + 1

Active participant

•A party wanting to 
initiate a connection

Passive participant

•A party willing to 
accept a connection

10



Three-Way Handshake

SYN, SequenceNum = X

Client Receiver

SYN + ACK, Sequence
Num = Y

Acknowledge
ment = X + 1

ACK, Acknowledgement = Y + 1

 Why not start with X = Y = 0 so that we can eliminate the three-way 
handshake? 

10



A connection (defined by a particular host and port 
pair) to be reused again

The Incarnation Issue

Solution: initial sequence number is randomly 
generated

11



How to implement this? 

SYN, SequenceNum = X

Client Receiver

SYN + ACK, Sequence
Num = Y

Acknowledge
ment = X + 1

ACK, Acknowledgement = Y + 1

12



State Machine (event/action)

Closed

Client

Closed

Server

LISTEN

Passive open

13



State Machine (Step 1)

Closed

Client

Closed

Server

SYN_SENT

Active open/SYN

LISTEN

Passive open

14



State Machine (Step 2)

Closed

Client

Closed

Server

SYN_SENT

Active open/SYN

LISTEN

Passive open

SYN_RCVD

SYN/SYN+ACK

15



State Machine (Step 3)

Closed

Client

Closed

Server

SYN_SENT

Active open/SYN

LISTEN

Passive open

SYN_RCVD

SYN/SYN+ACK

ESTABLISHED

SYN+ACK/ACK

ESTABLISHED

ACK

16



TCP Connection Establishment Summary

SYN, SequenceNum = X

Client Receiver

SYN + ACK, Sequence
Num = Y

Acknowledge
ment = X + 1

ACK, Acknowledgement = Y + 1

Closed Closed

SYN_SENT

SYN_RCVDESTABLISHED

LISTEN

ESTABLISHED
17



Connection Termination

Three cases:

• Case #1: One-side closes first

• Case #2: Both sides close simultaneously

• Case #3: Both sides close simultaneously (special)

18



Active participant Passive participant

4-way handshake

Case 1: One-side Closes First

19



I have no more data to send. 
My last sequence number = X

Active participant Passive participant

4-way handshake

Case 1: One-side Closes First

19



I have no more data to send. 
My last sequence number = X

Active participant Passive participant

Got it, I acknowledge the sequence 
number of your next byte is = X + 1

4-way handshake

Case 1: One-side Closes First

19



I have no more data to send. 
My last sequence number = X

Active participant Passive participant

Got it, I acknowledge the sequence 
number of your next byte is = X + 1

I also have no more data to send. 
My last sequence number = Y

4-way handshake

Case 1: One-side Closes First

19



I have no more data to send. 
My last sequence number = X

Active participant Passive participant

Got it, I acknowledge the sequence 
number of your next byte is = X + 1

I also have no more data to send. 
My last sequence number = Y

Got it, I acknowledge the 
sequence number of your 

next byte is = Y + 1

4-way handshake

Case 1: One-side Closes First

19



Active participant Passive participant

4-way handshake

Could we do a 3-way handshake? 

FIN, SequenceNum = X

Acknowled
gement = X+1

FIN, Sequence
Num = Y

Akcnowledgement = Y+1

Case 1: One-side Closes First

19



Case 1: State Machine Transition
Client Server

ESTABLISHED ESTABLISHED

20



Case 1: State Machine Transition (Step 1)
Client Server

ESTABLISHEDESTABLISHED

FIN_WAIT_1

Close/FIN

21



Case 1: State Machine Transition (Step 1)
Client Server

ESTABLISHED

CLOSE_WAIT

FIN/ACK

ESTABLISHED

FIN_WAIT_1

Close/FIN

21



Case 1: State Machine Transition (Step 2)
Client Server

ESTABLISHED

CLOSE_WAIT

FIN/ACK

ESTABLISHED

FIN_WAIT_1

Close/FIN

FIN_WAIT_2
ACK

22



Case 1: State Machine Transition (Step 3)
Client Server

ESTABLISHED

CLOSE_WAIT

FIN/ACK

LAST_ACK

Close/FIN

ESTABLISHED

FIN_WAIT_1

Close/FIN

FIN_WAIT_2
ACK

23



Case 1: State Machine Transition (Step 3)
Client Server

ESTABLISHED

CLOSE_WAIT

FIN/ACK

LAST_ACK

Close/FIN

ESTABLISHED

FIN_WAIT_1

Close/FIN

FIN_WAIT_2
ACK

TIME_WAIT

23



Case 1: State Machine Transition (Step 4)
Client Server

ESTABLISHED

CLOSE_WAIT

FIN/ACK

CLOSED

LAST_ACK

Close/FIN

ACK

ESTABLISHED

FIN_WAIT_1

Close/FIN

FIN_WAIT_2
ACK

TIME_WAITFIN/ACK

CLOSED

24



Case 1: State Machine Transition (Step 4)
Client Server

ESTABLISHED

CLOSE_WAIT

FIN/ACK

ESTABLISHED

FIN_WAIT_1

Close/FIN

FIN_WAIT_2
ACK

TIME_WAIT

CLOSED

LAST_ACK

Close/FIN

ACKCLOSED Timeout after two 
segment lifetimes

FIN/ACK

24



Active participant Passive participant

FIN, SequenceNum = X

Acknowled
gement = X+1

FIN, Sequence
Num = Y

Akcnowledgement = Y+1

ESTABLISHED ESTABLISHED

FIN_WAIT_1

CLOSE_WAIT

LAST_ACK

CLOSED

FIN_WAIT_2

TIME_WAIT

CLOSED

TCP Connection Termination (Case1) Summary

25



Case 2: Both Sides Close Simultaneously

I have no more data to send. 
My last sequence number = X

Active participant Passive participant

I also have no more data to send. My 
last sequence number = Y

Got it, I acknowledge the 
sequence number of your 

next byte is = Y+ 1

Got it, I acknowledge the 
sequence number of your 

next byte is = X + 1

26



Case 2: Both Sides Close Simultaneously

Active participant Passive participant
FIN, SequenceNum = X

FIN, SequenceNum
 = Y

Acknowled
gement = X + 1

Acknowledgement = Y+1

26



Client Server

ESTABLISHED

Case 2: State Machine Transition (Step 1)

ESTABLISHED

27



Client Server

ESTABLISHED

FIN_WAIT_1

Close/FIN

Case 2: State Machine Transition (Step 1)

ESTABLISHED

FIN_WAIT_1

Close/FIN

27



Client Server

ESTABLISHED

FIN_WAIT_1

Close/FIN

Case 2: State Machine Transition (Step 2)

CLOSING FIN/ACK

ESTABLISHED

FIN_WAIT_1

Close/FIN

CLOSING FIN/ACK

28



Client Server

ESTABLISHED

FIN_WAIT_1

Close/FIN

Case 2: State Machine Transition (Step 3)

CLOSING FIN/ACK

TIME_WAIT
ACK

ESTABLISHED

FIN_WAIT_1

Close/FIN

CLOSING FIN/ACK

TIME_WAIT
ACK

29



Client Server

ESTABLISHED

FIN_WAIT_1

Close/FIN

Case 2: State Machine Transition (Step 4)

CLOSING FIN/ACK

TIME_WAIT
ACK

CLOSED Timeout after two 
segment lifetimes

ESTABLISHED

FIN_WAIT_1

Close/FIN

CLOSING FIN/ACK

TIME_WAIT
ACK

CLOSED Timeout after two 
segment lifetimes

30



TCP Connection Termination (Case 2) Summary

Active participant Passive participant

FIN, SequenceNum = X

FIN, SequenceNum
 = Y

Acknowled
gement = X + 1

Acknowledgement = Y+1

ESTABLISHED

FIN_WAIT_1

CLOSING

CLOSED

ESTABLISHED

FIN_WAIT_1

CLOSING

CLOSED

31



I have no more data to send. 
My last sequence number = X

Active participant Passive participant

I also have no more data to send. My 
last sequence number = Y

Got it, I acknowledge the 
sequence number of your 

next byte is = Y+ 1

Got it, I acknowledge the 
sequence number of your 

next byte is = X + 1

Case 3: Both Sides Close Simultaneously, but

32



I have no more data to send. 
My last sequence number = X

Active participant Passive participant

I also have no more data to send. I 
acknowledge the sequence number 
of your next byte is = X + 1. And my 

last sequence number = YGot it, I acknowledge the 
sequence number of your 

next byte is = Y+ 1

Case 3: Both Sides Close Simultaneously, but

32



Active participant Passive participant
FIN, SequenceNum = X

FIN, SequenceNum
 = Y


Acknowledgeme
nt = X + 1

Acknowledgement = Y+1

Case 3: Both Sides Close Simultaneously, but

32



Client Server

ESTABLISHED

Case 3: State Machine Transition

ESTABLISHED

33



Client Server

ESTABLISHED

FIN_WAIT_1

Close/FIN

Case 3: State Machine Transition (Step 1)

ESTABLISHED

FIN_WAIT_1

Close/FIN

CLOSING FIN/ACK

34



Client Server

ESTABLISHED

FIN_WAIT_1

Close/FIN

Case 3: State Machine Transition (Step 2)

ACK+FIN/ACK

TIME_WAIT

ESTABLISHED

FIN_WAIT_1

Close/FIN

CLOSING FIN/ACK

TIME_WAIT
ACK

35



Client Server

ESTABLISHED

FIN_WAIT_1

Close/FIN

Case 3: State Machine Transition (Step 3)

ACK+FIN/ACK

TIME_WAIT

CLOSED Timeout after two 
segment lifetimes

ESTABLISHED

FIN_WAIT_1

Close/FIN

CLOSING FIN/ACK

TIME_WAIT
ACK

CLOSED Timeout after two 
segment lifetimes

36



Active participant Passive participant

FIN, SequenceNum = X

FIN, SequenceNum
 = Y


Acknowledgeme
nt = X + 1

Acknowledgement = Y+1

TCP Connection Termination (Case 3) Summary

ESTABLISHED

TIME_WAIT

CLOSED

ESTABLISHED

FIN_WAIT_1

CLOSING

FIN_WAIT_1

CLOSED

37



TCP State Transition Diagram Overall

38



TCP State Transition Diagram Overall

38



TCP State Transition Diagram Overall

39



TCP Connection Management Summary

Connection setup is asymmetric, where one side does 
a passive open the other side does an active open

Most of the states schedule a timeout, eventually 
causing the segment to be present if the expected 
response does not happen

40

Connection teardown is symmetric, where each side 
has to close the connection independently



Summary

Today

• TCP connection management 

Next lecture

• TCP reliability mechanisms

41


