Introduction to Computer Networks

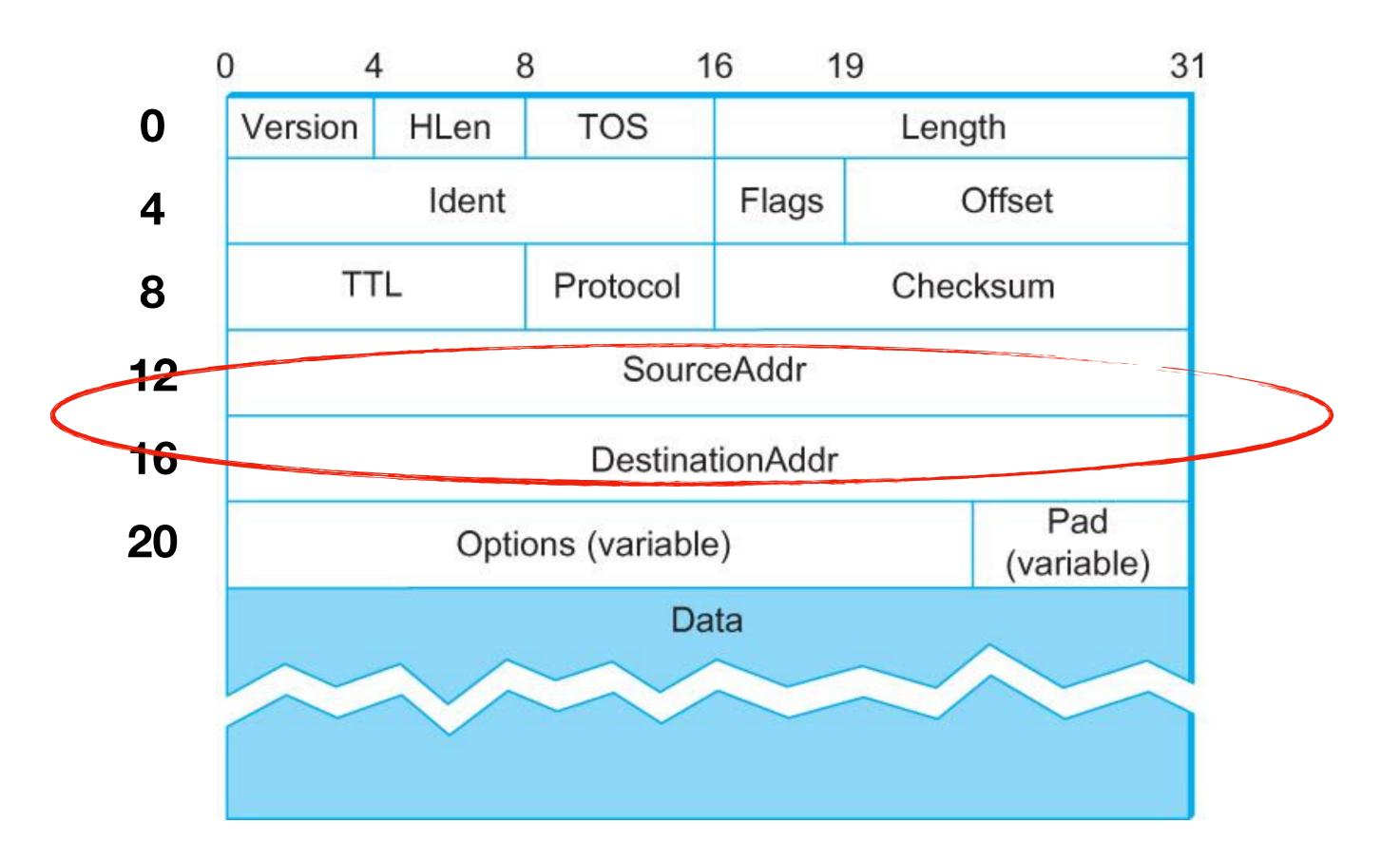
Efficient Addressing

https://pages.cs.wisc.edu/~mgliu/CS640/F22/

Ming Liu mgliu@cs.wisc.edu

Today

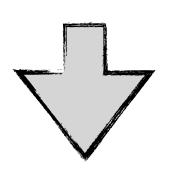
Last lecture


• What functionalities do the IP layer provide?

Today

• How to assign an IP address?

Announcements


- Lab2 is due tomorrow 10/14/2022, 11:59 PM
- Labs is released tomorrow

Q: How to assign an IP address?

Q1: Who owns the IP address?Q2: What are the requirements?Q3: What is the approach?

Q1: Who owns the IP address?

Q1: Who owns the IP address?

A: Host.

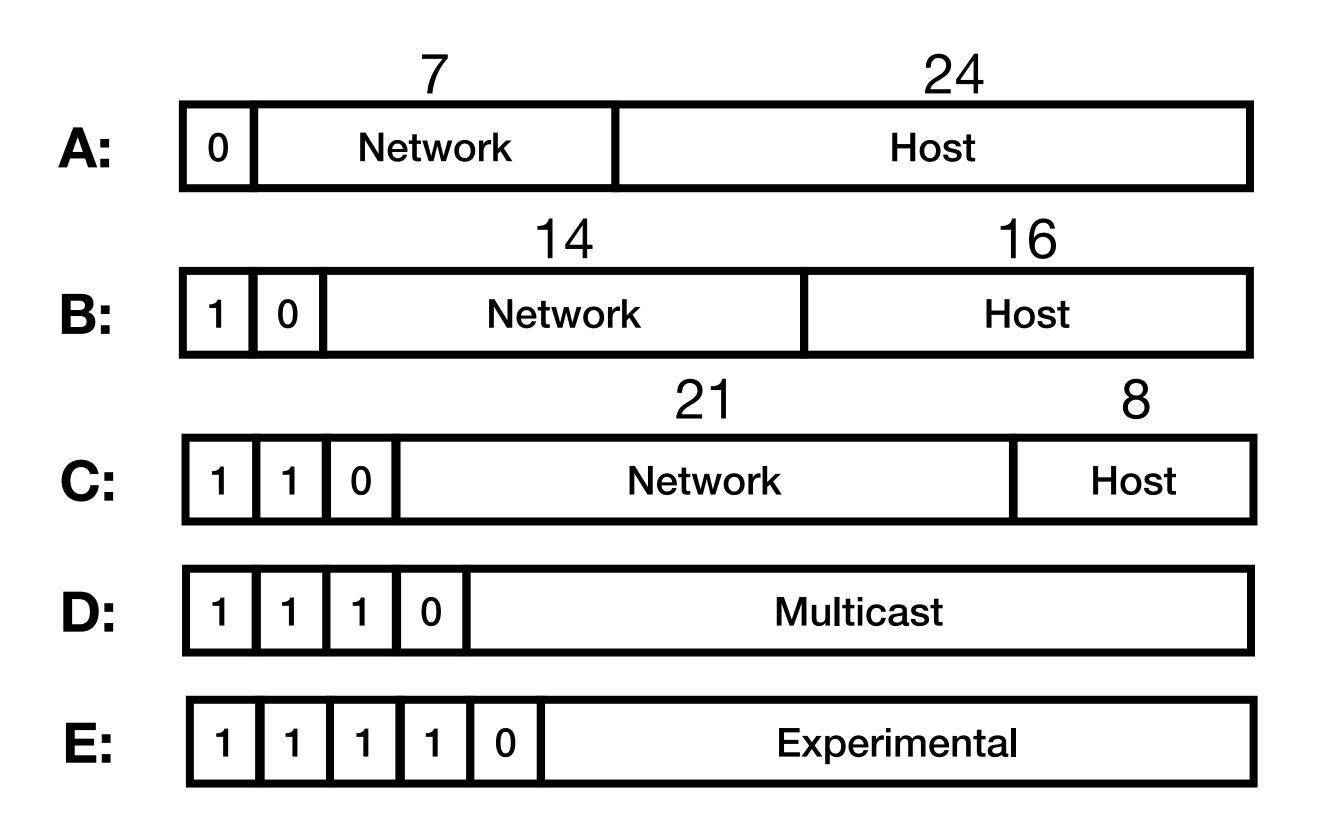
- An IP address is assigned to a host, but is associated with a communication port (i.e., interface)
- A host can own multiple IP addresses
- A host can reconfigure its IP address

Q2: What are the requirements?

Q2: What are the requirements?

A: Global uniqueness. IP provides a single logical network

IP provides a single lo
Impossible!



Q3: What is the approach?

Q3: What is the approach?

A: Hierarchical addresses. Assigned by ICANN (Internet Corporation for Assigned Names and Numbers)

IPv4 address Divide the 32-bit address to <network, host>

IPv4 address

Divide the 32-bit address to <network, host>

Classful addressing

- Class A: 1.0.0.0 to 127.0.0.0
- Class B: 128.0.0.0 to 191.255.0.0
- Class C: 192.0.0.0 to 223.255.255.0

Dot representation

- Four decimal integers separated by dots
- best-linux.cs.wisc.edu: 128.105.37.175

IPv4 address Divide the 32-bit address to <network, host>

ICANN assigns the network number (or IP address range) for an organization, but not for individual hosts!

- Four decimal integers separated by dots
- best-linux.cs.wisc.edu: 128.105.37.175

Host IP Assignment #1: Manual Configuration Most host operating systems provide a way to manual configure the IP information for the host

Drawbacks of manual configuration

- A lot of work to configure all the hosts in a large network
- The configuration process is error-prune

Host IP Assignment #2: DHCP

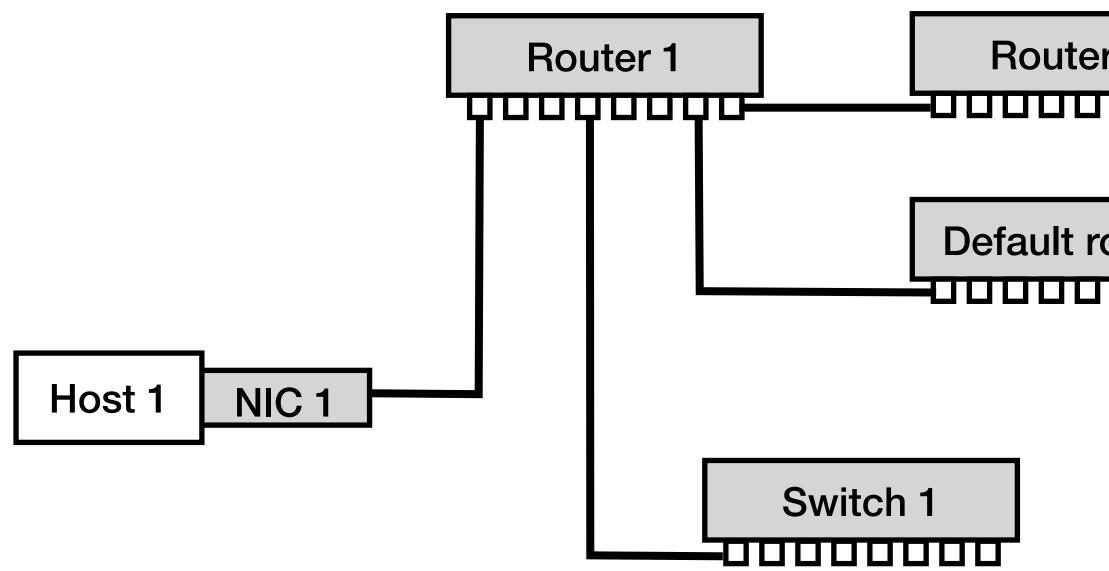
Dynamic Host Configuration Protocol

• A dedicated service for assigning IP for each administrative domain

A DHCP server maintains a pool of available addresses

- Maintain the mapping between hosts and IP addresses
- Each IP is associated with a lease to ensure flexibility
- Leases are periodically refreshed

How DHCP works


#1: The newly booted or attached host sends a specialized IP broadcast message to its network

- DHCP has its own header format
- Broadcast IP address: 255.255.255.255
- Use the Ethernet MAC address to distinguish itself from others

#2: The DHCP server replies to the host with an assigned IP address and metadata

- A DHCP server can also be responsible for multiple administrative domains
- A domain could hold a relay agent that interacts with the central DHCP server

Forwarding in a Router

r 2	
outer	

Network Number	Forwarding Port (NextHop)	
1	Port 1 (Host 1)	
2	Port 4 (Switch 1)	
3	Port 8 (Router 2)	

Forwarding in a Router

- D = destination IP address N = networkNum(D)
- if N == Network Number of one of my interfaces Deliver packet over that interface Else if N is in my lookup table else
 - deliver datagram to default router

deliver datagram to next Hop corresp. to N

Problem: network numbers are limited!

Subnet: one more address hierarchy

- Subnet mask: define a variable partition of the original host number part
- Subnets are not visible from the rest of the Internet

Subnet Number = IP address & subnet mask

Class B address

Subnetted address

Subnet mask 255.25.25.0

Network numb

Network numb

11111111111

n of the original host number part f the Internet

ber (16)	Host number (16)			
ber (16)	Subnet ID (X)	Host number (Y)		
1111111 1111111		0000000		

Routing Table

Network Number	Forwarding Port (NextHop)			
128.1.0.0 (class B)	Port 1			
128.2.0.0 (class B)	Port 2			
2.0.0.0 (class A)	Port 3			
Subnet Number	Subnet mask	NextHop		
128.1.0.0 (class B)	255.255.128.0	Port 1		
128.1.128.0 (class B)	255.255.128.0	Port 2		

Network Number	rk Number Forwarding Port (NextHop)			
128.1.0.0 (class B)	Port 1			
128.2.0.0 (class B)	Port 2			
2.0.0.0 (class A)	Port 3			
Subnet Number	Subnet mask	NextHop		
128.1.0.0 (class B)	255.255.128.0	Port 1		
128.1.128.0 (class B)	255.255.128.0	Port 2		
2.0.0.0 (class A)	255.255.255.0	Port 3		

Forwarding in a Router (Updated)

- D = destination IP address
- - D1 = SubnetMask & D
 - if D1 = SubnetNum
 - if NextHop is an interface
 - else
 - deliver datagram to NextHop

for each entry (SubnetNum, SubnetMask, NextHop)

deliver datagram directly to D

Suppose you are building networks for one organization that has 200 hosts, what kind of IP addresses do you want to apply?

200 hosts, what kind of IP addresses do you want to apply?

Suppose you are building networks for one organization that has

Suppose you are building networks for one organization that has 64000 hosts, what kind of IP addresses do you want to apply?

200 hosts, what kind of IP addresses do you want to apply?

257 hosts, what kind of IP addresses do you want to apply?

Suppose you are building networks for one organization that has

Suppose you are building networks for one organization that has 64000 hosts, what kind of IP addresses do you want to apply?

Suppose you are building networks for one organization that has

Supernetting

Key idea: aggregate multiple assigned addresses to a single address

CIDR (Classless Inter-Domain Routing) address

- Breaks rigid boundaries between address classes
- Slash notation also called a "prefix"
- 128.211.168.0/21 for addresses 128.211.168.0 128.211.175.255
- /8, /16, /24 correspond to traditional class A, B, C categories

Put Everything Together

Network number can be any length, from 2 to 32 bits

Longest prefix match (LPM) is needed

Subnet Number	Prefix/Subnet mask	NextHop
171.69.0.0	255.255.0.0	Port 1
171.69.128.0	255.255.255.0	Port 2

Terminology

- 1. Host
- 2. NIC
- 3. Multi-port I/O bridge 19. Timeout
- 4. Protocol
- 5. RTT
- 6. Packet
- 7. Header
- 8. Payload
- 9. BDP
- 10. Baud rate
- 11. Frame/Framing
- 12. Parity bit
- 13. Checksum
- 14. Ethernet
- 15. MAC
- 16. (L2) Switch

- 17. Broadcast
- 18. Acknowledgement
- - 20. Datagram
 - 21. TTL
 - 22. MTU
 - 23. Best effort
 - 24. (L3) Router
 - 25. Subnet mask
 - 26. CIDR

Principle

- 1. Layering
- 2. Minimal States
- 3. Hierarchy

Technique

- 1. NRZ Encoding
- 2. NRZI Encoding
- 3. Manchester Encoding
- 4. 4B/5B Encoding
- 5. Byte Stuffing
- 6. Byte Counting
- 7. Bit Stuffing
- 8. 2-D Parity
- 9. CRC
- 10. MAC Learning
- 11. Store-and-Forward
- 12. Cut-through
- 13. Spanning Tree
- 14. CSMA/CD
- 15. Stop-and-Wait
- 16. Sliding Window

- 16. Fragmentation and Reassembly
- 17. Path MTU discovery
- 18. DHCP
- 19. Subnetting
- 20. Supernetting
- 21. Longest prefix match

Summary

Today's takeaways

- #1: IP addresses are hierarchical
- IP address allocation

Next lecture

Distance vector routing

#2: Subnet and Supernet enable arbitrary network numbers and improve the efficiency of

