Introduction to Computer Networks

Distance Vector Routing

https://pages.cs.wisc.edu/~mgliu/CS640/F22/

Ming Liu mgliu@cs.wisc.edu

Today

Last lecture

• How to assign an IP address?

Today

• How to decide the forwarding path among routers?

Announcements

• Labs is due 11/04/2022, 11:59 PM

The Goal of Routing Build forwarding tables at a router to achieve both network connectivity and some design goals

Routing v.s. Forwarding Routing

Process by which routing table is built

Forwarding

To select an output port based on destination address and routing table

Routing Table v.s. Forwarding Table

Routing table

- Built by the routing algorithm as a precursor to building the forwarding table Contain the mapping from network numbers to next hops

Forwarding table

- Used when a packet is being forwarded among physical ports/interfaces Ethernet switch: <MAC address, outgoing port>
- IP router: <Network information (of the next hop), outgoing port>

An Example

Subnet	Subnet Subnet Mask		Routing Table
128.1.0.0	255.255.128.0	Router 1	
128.1.128.0	255.255.128.0	Router 2	
2.0.0.0	255.255.255.0	Router 3	
Forwarding Table			
Forwar	ding Table	NextHop	Forwarding Port
Forwar	ding Table	NextHop Router 1	Forwarding Port Port 1
Forwar	ding Table	-	

An Example

Destination

	Subnet Subnet Mask		NextHop	Routing Table
	128.1.0.0	255.255.128.0	Router 1	
	128.1.128.0	255.255.128.0	Router 2	
	2.0.0.0	255.255.255.0	Router 3	
-	Forwar	ding Table	NextHop	Forwarding Port
			Router 1	Port 1
			Router 2	Port 2
			Router 3	Port 3

Q: How to decide the forwarding path among routers?

Q: How to build the routing table?

OR

- Represent connected networks as a graph
- Vertices in the graph are routers
- Edges in the graph are links
- Links have communication cost, which can be quantized!

- **Q: How to decide the forwarding path among** routers?
 - OR
 - **Q: How to build the routing table?**
 - A: Routing Algorithm/Protocol.

Routing is hard!

#1: Network hardware fabric is dynamic

Links and routers are failed or added

#2: Network traffic is dynamic

• A routing or link can be overloaded

#3: Cost is dynamic

The value depends on the physical properties, ongoing traffic load, ...

#4: No centralized view

Protocols should work in a distributed fashion

Technique #1: Static Configuration

For a simple network, we can calculate all shortest (preferred) paths and load them into the non-volatile storage of each router

Drawbacks

- No adaptation
- Unable to scale

Technique #2: Distance Vector Routing Key idea: Each node constructs a one-dimensional array (vector) that contains the "distance" (cost) to all other nodes, and distributes that vector to its immediate neighbors

Assumption

• Each node knows the cost of the link to each of its directly connected neighbors

Distance Vector Protocol

		Distance to Reach Node (Global View)						
	Α	В	С	D	Ε	F	G	
Α								
B								
С								
D								
E								
F								
G								

		Distance to Reach Node (Global View)					
	Α	В	С	D	Ε	F	G
Α	0	1	1	∞	1	1	∞
В							
С							
D							
E							
F							
G							

		Distance to Reach Node (Global View)						
	Α	В	С	D	Е	F	G	
Α	0	1	1	∞	1	1	∞	
В	1	0	1	∞	∞	∞	∞	
С								
D								
Ε								
F								
G								

		Distance to Reach Node (Global View)						
	Α	B	С	D	Е	F	G	
Α	0	1	1	∞	1	1	∞	
В	1	0	1	∞	∞	∞	∞	
С	1	1	0	1	∞	∞	∞	
D								
Ε								
F								
G								

		Distance to Reach Node (Global View)					
	Α	В	С	D	Ε	F	G
Α	0	1	1	∞	1	1	∞
В	1	0	1	∞	∞	∞	∞
С	1	1	0	1	∞	∞	∞
D	∞	∞	1	0	∞	∞	1
E	1	∞	∞	∞	0	∞	∞
F	1	∞	∞	∞	∞	0	1
G	∞	∞	∞	∞	∞	1	0

Destination	Cost	NextHop
B	1	В
С	1	С
D	∞	_
Ε	1	E
F	1	F
G	∞	

Destination	Cost	NextHop
Α	1	Α
С	1	С
D	00	
Ε	00	
F	00	
G	$\mathbf{\infty}$	

Destination	Cost	NextHop
Α	1	Α
B	1	B
D	1	D
Ε	∞	
F	00	
G	∞	

Destination	Cost	NextHop
Α	1	Α
B	\mathbf{o}	
С	00	
D	0	
F	00	
G	∞	

Destination	Cost	NextHop
Α	1	Α
B	∞	
С	8	_
D	∞	
Ε	8	
G	1	G

Dest.	Cost	NextHop	
B	1	В	
С	1	С	_
D	∞	_	-
Ε	1	E	
F	1	F	
G	∞	_	

Dest.	Cos
Α	1
С	1
D	∞
Ε	∞
F	∞
G	∞

Dest.	Cost	NextHop	
B	1	В	
С	1	С	_
D	∞	_	-
Ε	1	E	
F	1	F	
G	∞	_	

Dest.	Cos
Α	1
С	1
D	∞
Ε	∞
F	∞
G	∞

Dest.	Cost	NextHop	
B	1	В	
С	1	С	_
D	∞	_	-
Ε	1	E	
F	1	F	
G	∞	_	

Dest.	Cos
Α	1
С	1
D	∞
Ε	∞
F	∞
G	∞

Dest.	Cost	NextHop	
B	1	В	
С	1	С	_
D	∞		
Ε	1	E	
F	1	F	
G	∞		

Dest.	Cost	NextHop
Α	1	Α
В	1	В
D	1	D
Ε	∞	_
F	∞	_
G	∞	_

Dest.	Cost	NextHop
В		
С		
D		
Ε		
F		
G		

Dest.	Cost	NextHop	
B	1	В	
С	1	С	_
D	∞		
Ε	1	E	
F	1	F	
G	∞		

Dest.	Cos
Α	1
В	1
D	1
Ε	∞
F	∞
G	∞

Dest.	Cost	NextHop	
B	1	В	
С	1	С	_
D	2	С	╺╋╸
Ε	1	E	
F	1	F	
G	∞	_	

Dest.	Cost	NextHop
Α	1	Α
В	∞	_
С	∞	_
D	∞	_
F	∞	_
G	∞	_

Dest.	Cost	NextHop
B		
С		
D		
Ε		
F		
G		

Dest.	Cost	NextHop	
B	1	В	
С	1	С	
D	2	С	
Ε	1	E	
F	1	F	
G	∞	_	

Dest.	Cost	NextHop
Α	1	Α
Β	∞	_
С	∞	_
D	∞	_
F	∞	
G	∞	

Dest.	Cost	NextHop
B	1	B
С	1	С
D	2	С
Ε	1	E
F	1	F
G	$\mathbf{\infty}$	-

Dest.	Cost	NextHop	
В	1	В	
С	1	С	
D	2	С	
Ε	1	E	
F	1	F	
G	∞	_	

Dest.	Cost	NextHop
Α	1	Α
В	∞	_
С	∞	_
D	∞	_
F	0	F
G	1	G

Dest.	Cost	NextHop
В		
С		
D		
Ε		
F		
G		

Dest.	Cost	NextHop	
В	1	В	
С	1	С	
D	2	С	
Ε	1	E	
F	1	F	
G	∞	_	

	F			Α	
Dest.	Cost	NextHop	Dest.	Cost	NextHop
Α	1	Α	B	1	B
B	∞	_	С	1	С
С	∞	_	D	2	С
D	∞	_	Ε	1	E
F	0	F	F	1	F
G	1	G	G	2	F

Dest.	Cost	NextHop	
Α	1	Α	
В	∞	_	
С	∞	_	
D	∞	_	
F	∞	_	
G	∞	_	

Dest.	Cost	NextHop
В	1	В
С	1	С
D	2	С
Ε	1	Е
F	1	F
G	∞	_

Dest.	Cost	NextHop
Α	1	Α
B	2	Α
С	2	Α
D	3	Α
F	2	Α
G	$\mathbf{\infty}$	

Dest.	Cost	NextHop
Α	1	Α
В	∞	_
С	∞	_
D	∞	_
F	∞	_
G	∞	_

Dest.	Cost	NextHop
В	1	В
С	1	С
D	2	С
Ε	1	Е
F	1	F
G	2	E

Dest.	Cost	NextHop
Α	1	Α
B	2	Α
С	2	Α
D	3	Α
F	2	Α
G	2	Α

Distance Table (stable)

	Distance to Reach Node (Global View)						
	Α	В	С	D	Ε	F	G
Α	0	1	1	2	1	1	2
В	1	0	1	2	2	2	3
С	1	1	0	1	2	2	2
D	2	2	1	0	3	2	1
E	1	2	2	3	0	2	3
F	1	2	2	2	2	0	1
G	2	3	2	1	3	1	0

Distance Vector Discussion

#1: The distance vector routing is based on the Bellman-Ford algorithm

#2: Every T seconds each router sends a list of distance to all the routers to its neighbor

#3: Each router then updates its table based on the new information

17

Distance Vector Discussion

#1: The distance vector routing is based on the

Advantage

- Fast response to the good news
 Disadvantage
 - Slow response to the bad news

new information

17

Distance Vector under Link Failure

Distance Vector under Link Failure В Ε F

- F detects that the link to G has failed
- F sets the distance to G as infinity and sends updates to A
- A sets the distance to G to infinity since it uses F to reach G

Distance Vector under Link Failure B E F

- F detects that the link to G has failed

- F sets the distance to G as infinity and sends updates to A • A sets the distance to G to infinity since it uses F to reach G • A receives a periodic update from C with a 2-hop path to G A sets the distance to G to 3 and sends an update to F • F decides it can reach G in 4 hops via A

Distance Vector under Link Failure B E F

- F detects that the link to G has failed

- F sets the distance to G as infinity and sends updates to A • A sets the distance to G to infinity since it uses F to reach G • A receives a periodic update from C with a 2-hop path to G A sets the distance to G to 3 and sends an update to F • F decides it can reach G in 4 hops via A

Converge: the process of getting consistent routing information to all the nodes

Slightly different circumstances can prevent the network from stabilizing

- At to, A detects the link failure and advertises a distance of infinity to E
- At t1, B and C receive the message, and update the routing table accordingly

- At to, A detects the link failure and advertises a distance of infinity to E
- At t1, B receives the message from A and updates the routing table as <E, Infinity>
- At t2, B receives the message from C (saying the distance to E is 2), and updates the routing table as <E, 3>

- At to, A detects the link failure and advertises a distance of infinity to E
- At t1, B receives the message from A and updates the routing table as <E, Infinity>
- At t2, B receives the message from C (saying the distance to E is 2), and updates the routing table as <E, 3>
- At t3, C receives the message from A and updates the routing table as <E, Infinity>

- At t4, C receives the message from B (saying the distance to E is 3), and updates the routing table as <E, 4>
- At t4, A receives the message from B (saying the distance to E is 3), and updates the routing table as <E, 4>

- routing table as <E, 4>
- routing table as <E, 4>

• At t4, C receives the message from B (saying the distance to E is 3), and updates the

• At t4, A receives the message from B (saying the distance to E is 3), and updates the

A will advertise this new changes to C, then C advertises B, B advertises A, …

enough to be considered infinite

This is called the Count-to-infinity problem

This cycle stops only when the distances reach some threshold that is large

Count-to-infinity Problem: A Simple Fix

Use some relatively small number as an approximation of infinity

• The maximum number of hops to get across a network never exceeds 16

Routing Information Protocol (RIP)

Earliest IP routing protocol

- 1982 BSD of Unix
- Current standard is version 2 (RFC 1723)

Features

- Cost: the number of hops
- "Infinity" = 16

Sending updates

- Every router listens for updates on UDP port 520
- Frequency: 30 seconds
- Triggered when an entry is changed

3	1
	ĺ
-	1
_	1
	1
-	1
_	
-	
_	
_	
-	1
_	
	1

21

IP Router v.s. Ethernet Switch (Incomplete!)

	IP Router	Ethernet Switch		
Layering	Layer 3	Layer 2		
Packet Manipulation	Fragmentation and Reassembly; TTL update	N/A		
Packet Forwarding	Based on the destination IP address	Based on destination Ethernet address; Run the spanning tree protocol to avoid forwarding loops		
Routing	Based on the routing algorithm	N/A		
Error Handling	Speak the ICMP protocol	N/A		

L1 L2 L3 L4 L5

Computer Networks Introduction

- Q1: What are computer networks?
- Q2: What are the requirements of computer networks?
- Q3: What hardware elements are used?
- Q4: What software components are needed?
- Q5: How fast is the network?

Physical Layer (L1): bits over wire Q1: How to represent bits on the link? Q2: How to propagate bits across the link reliably?

L4

L3

L5

L6

Computer Networks Introduction

L2

- Q1: What are computer networks?
- Q2: What are the requirements of computer networks?
- Q3: What hardware elements are used?
- Q4: What software components are needed?

L1

Q5: How fast is the network?

Physical Layer (L1): bits over wire Q1: How to represent bits on the link?

- Q1: What are computer networks?
- Q2: What are the requirements of computer networks?
- Q3: What hardware elements are used?
- Q4: What software components are needed?
- Q5: How fast is the network?

- Q5: How to ensure reliable frame delivery?

Terminology

- 1. Host
- 2. NIC
- 3. Multi-port I/O bridge 19. Timeout
- 4. Protocol
- 5. RTT
- 6. Packet
- 7. Header
- 8. Payload
- 9. BDP
- 10. Baud rate
- 11. Frame/Framing
- 12. Parity bit
- 13. Checksum
- 14. Ethernet
- 15. MAC
- 16. (L2) Switch

- 17. Broadcast
- 18. Acknowledgement
- - 20. Datagram
 - 21. TTL
 - 22. MTU
 - 23. Best effort
 - 24. (L3) Router
 - 25. Subnet mask
 - 26. CIDR
 - 27. Converge
 - 28. Count-to-infinity

Principle

- 1. Layering
- 2. Minimal States
- 3. Hierarchy

Technique

- 1. NRZ Encoding
- 2. NRZI Encoding
- 3. Manchester Encoding
- 4. 4B/5B Encoding
- 5. Byte Stuffing
- 6. Byte Counting
- 7. Bit Stuffing
- 8. 2-D Parity
- 9. CRC
- 10. MAC Learning
- 11. Store-and-Forward
- 12. Cut-through
- 13. Spanning Tree
- 14. CSMA/CD
- 15. Stop-and-Wait
- 16. Sliding Window

- 16. Fragmentation and Reassembly
- 17. Path MTU discovery
- 18. DHCP
- 19. Subnetting
- 20. Supernetting
- 21. Longest prefix match
- 22. Distance vector routing (RIP)

Summary

Today's takeaways

- variation
- exchanging the distance vector among neighboring routers

Next lecture

In-class Midterm1

#1: Routing is the process of building the routing table to instruct the forwarding logic #2: Efficient routing mechanism should be adapted to the infrastructure and network

#3: The distance vector routing protocol decides the preferred communication path by

