
Ming Liu

mgliu@cs.wisc.edu

Introduction to Computer Networks

CS640

https://pages.cs.wisc.edu/~mgliu/CS640/F22/

Link State Routing

1

Today

2

Last lecture

• How to decide the forwarding path among routers?

Today

• How to decide the forwarding path among routers?

Announcements

• Lab3 is due 11/04/2022, 11:59 PM

Network 1

Network 2

Router 1

Network 3

Router 2

Network 4

Network N-1

Network N

Router M

3

Q: How to decide the forwarding path among
routers?

4

OR
Q: How to build the routing table?

Q: How to decide the forwarding path among
routers?

4

OR
Q: How to build the routing table?

A: Routing Algorithm/Protocol.
• Represent connected networks as a graph

• Vertices in the graph are routers

• Edges in the graph are links

• Links have communication cost, which can be quantized!

Techniques

#1: Static configuration

#2: Distance vector routing

#3: Link state routing

5

Link State Routing Overview

Find the shortest path between two nodes of the
entire network

• Each node has complete information about the network

• Known to converge quickly under static conditions

6

Key idea: Send all nodes (not just neighbors)
information about the communication cost of direct-
connected links (not the entire routing table)

Q: How does the link state routing work?

7

Q: How does the link state routing work?

A: Two steps:
• #1: Reliable flooding

• #2: Route calculation

7

Q: How does the link state routing work?

A: Two steps:
• #1: Reliable flooding

• #2: Route calculation

7

Assumption: Each node can find out the state of the
link to its neighbors and the cost of each link

Step 1: Reliable Flooding

A node sends its link-state information out on all of its
directly connected links; each node that receives this
information then forwards it out on all its links

8

A node sends its link-state information out on all of its
directly connected links; each node that receives this
information then forwards it out on all its links

Link state packet (LSP)

• The ID of the node that created the LSP

• The cost of the link to each directly connected neighbor

• The sequence number (SEQ#)

• The time-to-live (TTL) of this packet

8

Step 1: Reliable Flooding

A node sends its link-state information out on all of its
directly connected links; each node that receives this
information then forwards it out on all its links

Link state packet (LSP)

• The ID of the node that created the LSP

• The cost of link to each directly connect neighbor

• The sequence number (SEQNO)

• The time-to-live (TTL) of this packet

8

Step 1: Reliable Flooding

 LSP is generated when there is a topology change event or timeout event
happening

Q: Why do we need a sequence number?

9

Q: Why do we need a sequence number?

9

A: Identify the latest link cost

Sequence Number

Receiver logic:

• Upon receiving a copy of LSP (A)

• Check if it has already received a copy (A’) before

• If A’ == NULL, then accept

• If A’ != NULL

• If A’.SEQ# > A.SEQ#, then accept; Otherwise, ignore

• Forward A to all its neighbors except the neighbor from which the LSP was just
received

10

Sender logic:

• Generate a new LSP periodically

• Start SEQ# at 0 when rebooted and increment SEQ# after each LSP

Time-to-live (TTL)

Decrement the TTL field when storing the LSP

Discard the LSP when its TTL = 0

11

A Flooding Example

X(a) A

C B D

12

A Flooding Example

X(a) A

C B D

X(b) A

C B D

12

A Flooding Example

X(a) A

C B D

X(b) A

C B D

X(c) A

C B D
12

A Flooding Example

X(a) A

C B D

X(b) A

C B D

X(c) A

C B D

X(d) A

C B D
12

Q: How does the link state routing work?

A: Two steps:
• #1: Reliable flooding

• #2: Route calculation

13

Step 2: Route Calculation

B

A

D

C

5

10

11
3

2

14

B

A

D

C

5

10

11
3

2

Router A Info. ID Link Costs SEQ# TTL
A LSP A [A, B] = 5, [A, C] = 10 1 64

B LSP B [B, A] = 5, [B, C] = 3, [B, D] = 11 1 63

C LSP C [C, A] = 10, [C, B] = 3, [C, D] = 2 1 63

D LSP D [D, B] = 11, [D, C] = 2 1 62

14

Step 2: Route Calculation

B

A

D

C

5

10

11
3

2

Router B Info. ID Link Costs SEQ# TTL
A LSP
B LSP
C LSP
D LSP

14

Step 2: Route Calculation

B

A

D

C

5

10

11
3

2

Router B Info. ID Link Costs SEQ# TTL
A LSP A [A, B] = 5, [A, C] = 10 1 63

B LSP B [B, A] = 5, [B, C] = 3, [B, D] = 11 1 64

C LSP C [C, A] = 10, [C, B] = 3, [C, D] = 2 1 63

D LSP D [D, B] = 11, [D, C] = 2 1 63

14

Step 2: Route Calculation

B

A

D

C

5

10

11
3

2

Problem formulation: compute the shortest path
between any two nodes i and j, given

• N: the set of nodes in the graph

• l(i,j): the non-negative cost associated with the edge between nodes i, j N and l(i,j) = ∞ if
no edge connects i and j

14

Step 2: Route Calculation

Step 2: Route Calculation — Dijkstra Algorithm

B

A

D

C

5

10

11
3

2

Problem formulation: compute the shortest path
between any two nodes i and j, given

• N: the set of nodes in the graph

• l(i,j): the non-negative cost associated with the edge between nodes i, j N and l(i,j) = ∞ if
no edge connects i and j

14

Dijkstra’s Shortest-Path Routing

Input

• N: the set of nodes in the graph

• l(i,j): the non-negative cost associated with the edge between nodes i, j N and l(i,j) = ∞ if
no edge connects i and j

Let s N be the starting node which executes the
algorithm to find shortest paths to all other nodes in N

15

Dijkstra’s Shortest-Path Routing Algorithm

M = {S}

for each n in N - {S}

C(n) = l(s, n) /* costs of directly connected nodes */

while (N ≠ M)

M = M {w} such that C(w) is the minimum for all w in (N - M)

for each n in (N - M) /* recalculate costs */

C(n) = MIN(C(n), C(w) + l(w,n))

Algorithm:

• M: set of nodes incorporated so far by the algorithm

• C(n): the cost the path from s to each node n

16

Building Routing Table for Node D
B

A

D

C

5

10

11
3

2

17

Building Routing Table for Node D
B

A

D

C

5

10

11
3

2

Step Confirmed list Tentative list Comment

17

Building Routing Table for Node D
B

A

D

C

5

10

11
3

2

Step Confirmed list Tentative list Comment

 M from the above algorithm

17

Building Routing Table for Node D
B

A

D

C

5

10

11
3

2

Step Confirmed list Tentative list Comment

 (N-M) from the above algorithm

17

Building Routing Table for Node D
B

A

D

C

5

10

11
3

2

Step Confirmed list Tentative list Comment
1 (D, 0, -) Initialize with an entry for myself

Routing table entry:
(Destination, Cost, NextHop)

17

Building Routing Table for Node D
B

A

D

C

5

10

11
3

2

Step Confirmed list Tentative list Comment
1 (D, 0, -) Initialize with an entry for myself

Routing table entry:
(Destination, Cost, NextHop)

M = {S}

for each n in N - {S}

C(n) = l(s, n) /* costs of directly connected nodes */

while (N ≠ M)

M = M {w} such that C(w) is the minimum for all w in (N - M)

for each n in (N - M) /* recalculate costs */

C(n) = MIN(C(n), C(w) + l(w,n))

17

Building Routing Table for Node D
B

A

D

C

5

10

11
3

2

Step Confirmed list Tentative list Comment
1 (D, 0, -) Initialize with an entry for myself

2 (D, 0, -) (B, 11, B), (C, 2, C) Based on D’s LSP

Routing table entry:
(Destination, Cost, NextHop)

17

Building Routing Table for Node D
B

A

D

C

5

10

11
3

2

Step Confirmed list Tentative list Comment
1 (D, 0, -) Initialize with an entry for myself
2 (D, 0, -) (B, 11, B), (C, 2, C) Based on D’s LSP

Routing table entry:
(Destination, Cost, NextHop)

M = {S}

for each n in N - {S}

C(n) = l(s, n) /* costs of directly connected nodes */

while (N ≠ M)

M = M {w} such that C(w) is the minimum for all w in (N - M)

for each n in (N - M) /* recalculate costs */

C(n) = MIN(C(n), C(w) + l(w,n))

17

Building Routing Table for Node D
B

A

D

C

5

10

11
3

2

Step Confirmed list Tentative list Comment
1 (D, 0, -) Initialize with an entry for myself

2 (D, 0, -) (B, 11, B), (C, 2, C) Based on D’s LSP

3 (D, 0, -), (C, 2, C) (B, 11, B) Integrate lowest-cost member of tentative list

Routing table entry:
(Destination, Cost, NextHop)

17

Building Routing Table for Node D
B

A

D

C

5

10

11
3

2

Step Confirmed list Tentative list Comment
1 (D, 0, -) Initialize with an entry for myself
2 (D, 0, -) (B, 11, B), (C, 2, C) Based on D’s LSP
3 (D, 0, -), (C, 2, C) (B, 11, B) Integrate lowest-cost member of tentative list

Routing table entry:
(Destination, Cost, NextHop)

M = {S}

for each n in N - {S}

C(n) = l(s, n) /* costs of directly connected nodes */

while (N ≠ M)

M = M {w} such that C(w) is the minimum for all w in (N - M)

for each n in (N - M) /* recalculate costs */

C(n) = MIN(C(n), C(w) + l(w,n))

17

Building Routing Table for Node D
B

A

D

C

5

10

11
3

2

Step Confirmed list Tentative list Comment
1 (D, 0, -) Initialize with an entry for myself

2 (D, 0, -) (B, 11, B), (C, 2, C) Based on D’s LSP

3 (D, 0, -), (C, 2, C) (B, 11, B) Integrate lowest-cost member of tentative list

4 (D, 0, -), (C, 2, C) (B, 5, C), (A, 12, C) Based on C’s LSP and recalculate the cost

Routing table entry:
(Destination, Cost, NextHop)

17

Building Routing Table for Node D
B

A

D

C

5

10

11
3

2

Step Confirmed list Tentative list Comment
1 (D, 0, -) Initialize with an entry for myself

2 (D, 0, -) (B, 11, B), (C, 2, C) Based on D’s LSP

3 (D, 0, -), (C, 2, C) (B, 11, B) Integrate lowest-cost member of tentative list

4 (D, 0, -), (C, 2, C) (B, 5, C), (A, 12, C) Based on C’s LSP and recalculate the cost

Routing table entry:
(Destination, Cost, NextHop)

M = {S}

for each n in N - {S}

C(n) = l(s, n) /* costs of directly connected nodes */

while (N ≠ M)

M = M {w} such that C(w) is the minimum for all w in (N - M)

for each n in (N - M) /* recalculate costs */

C(n) = MIN(C(n), C(w) + l(w,n))

17

Building Routing Table for Node D
B

A

D

C

5

10

11
3

2

Step Confirmed list Tentative list Comment
1 (D, 0, -) Initialize with an entry for myself

2 (D, 0, -) (B, 11, B), (C, 2, C) Based on D’s LSP

3 (D, 0, -), (C, 2, C) (B, 11, B) Integrate lowest-cost member of tentative list

4 (D, 0, -), (C, 2, C) (B, 5, C), (A, 12, C) Based on C’s LSP and recalculate the cost

5 (D, 0, -), (C, 2, C), (B, 5, C) (A, 12, C) Integrate lowest-cost member of tentative list

Routing table entry:
(Destination, Cost, NextHop)

17

Building Routing Table for Node D
B

A

D

C

5

10

11
3

2

Step Confirmed list Tentative list Comment
1 (D, 0, -) Initialize with an entry for myself

2 (D, 0, -) (B, 11, B), (C, 2, C) Based on D’s LSP

3 (D, 0, -), (C, 2, C) (B, 11, B) Integrate lowest-cost member of tentative list

4 (D, 0, -), (C, 2, C) (B, 5, C), (A, 12, C) Based on C’s LSP and recalculate the cost

5 (D, 0, -), (C, 2, C), (B, 5, C) (A, 12, C) Integrate lowest-cost member of tentative list

Routing table entry:
(Destination, Cost, NextHop)

M = {S}

for each n in N - {S}

C(n) = l(s, n) /* costs of directly connected nodes */

while (N ≠ M)

M = M {w} such that C(w) is the minimum for all w in (N - M)

for each n in (N - M) /* recalculate costs */

C(n) = MIN(C(n), C(w) + l(w,n))

17

Building Routing Table for Node D
B

A

D

C

5

10

11
3

2

Step Confirmed list Tentative list Comment
1 (D, 0, -) Initialize with an entry for myself

2 (D, 0, -) (B, 11, B), (C, 2, C) Based on D’s LSP

3 (D, 0, -), (C, 2, C) (B, 11, B) Integrate lowest-cost member of tentative list

4 (D, 0, -), (C, 2, C) (B, 5, C), (A, 12, C) Based on C’s LSP and recalculate the cost

5 (D, 0, -), (C, 2, C), (B, 5, C) (A, 12, C) Integrate lowest-cost member of tentative list

6 (D, 0, -), (C, 2, C), (B, 5, C) (A, 10, C) Based on B’s LSP, i.e., l(D, A) = l(D, B) + l(B, A)

Routing table entry:
(Destination, Cost, NextHop)

17

Building Routing Table for Node D
B

A

D

C

5

10

11
3

2

Step Confirmed list Tentative list Comment
1 (D, 0, -) Initialize with an entry for myself

2 (D, 0, -) (B, 11, B), (C, 2, C) Based on D’s LSP

3 (D, 0, -), (C, 2, C) (B, 11, B) Integrate lowest-cost member of tentative list

4 (D, 0, -), (C, 2, C) (B, 5, C), (A, 12, C) Based on C’s LSP and recalculate the cost

5 (D, 0, -), (C, 2, C), (B, 5, C) (A, 12, C) Integrate lowest-cost member of tentative list

6 (D, 0, -), (C, 2, C), (B, 5, C) (A, 10, C) Based on B’s LSP, i.e., l(D, A) = l(D, B) + l(B, A)

Routing table entry:
(Destination, Cost, NextHop)

M = {S}

for each n in N - {S}

C(n) = l(s, n) /* costs of directly connected nodes */

while (N ≠ M)

M = M {w} such that C(w) is the minimum for all w in (N - M)

for each n in (N - M) /* recalculate costs */

C(n) = MIN(C(n), C(w) + l(w,n))

17

Building Routing Table for Node D
B

A

D

C

5

10

11
3

2

Step Confirmed list Tentative list Comment
1 (D, 0, -) Initialize with an entry for myself

2 (D, 0, -) (B, 11, B), (C, 2, C) Based on D’s LSP

3 (D, 0, -), (C, 2, C) (B, 11, B) Integrate lowest-cost member of tentative list

4 (D, 0, -), (C, 2, C) (B, 5, C), (A, 12, C) Based on C’s LSP and recalculate the cost

5 (D, 0, -), (C, 2, C), (B, 5, C) (A, 12, C) Integrate lowest-cost member of tentative list

6 (D, 0, -), (C, 2, C), (B, 5, C) (A, 10, C) Based on B’s LSP, i.e., l(D, A) = l(D, B) + l(B, A)

Routing table entry:
(Destination, Cost, NextHop)

(D, 0, -), (C, 2, C), (B, 5, C), (A, 10, C)

17

Building Routing Table for Node A
B

A

D

C

5

10

11
3

2

Step Confirmed list Tentative list Comment

Routing table entry:
(Destination, Cost, NextHop)

18

Building Routing Table for Node A
B

A

D

C

5

10

11
3

2

Step Confirmed list Tentative list Comment
1 (A, 0, -) Initialize an entry for my self

2 (A, 0, -) (B, 5, B), (C, 10, C) Based on A’s LSP

3 (A, 0, -), (B, 5, B) (C, 10, C) Integrate lowest-cost member of tentative list

4 (A, 0, -), (B, 5, B) (C, 8, B), (D, 16, B) Based on B’s LSP and recalculate the cost

5 (A, 0, -), (B, 5, B), (C, 8, B) (D, 16, B) Integrate lowest-cost member of tentative list

6 (A, 0, -), (B, 5, B), (C, 8, B) (D, 10, B) Based on C’s LSP, i.e., l(A, D) = l(A, C) + l(C, D)

7 (A, 0, -), (B, 5, B), (C, 8, B), (D, 10, B) Integrate lowest-cost member of tentative list

Routing table entry:
(Destination, Cost, NextHop)

18

Open Shortest Path First (OSPF)

OSPF header format

19

Open Shortest Path First (OSPF)

 set to 2

19

Open Shortest Path First (OSPF)

 Five different OSPF messages

• For example, type = 1 is the “hello” message as
the heartbeat signal

19

Open Shortest Path First (OSPF)

SourceAddr: the sender of the message

Areald: the identifier of the area in which the node is located

19

Open Shortest Path First (OSPF)

Checksum: same as the IP checksum

Authentication:

• 0, no authentication

• 1, a simple password

• 2, a cryptographic authentication checksum 19

Open Shortest Path First (OSPF)

OSPF link-state advertisement

19

Open Shortest Path First (OSPF)

OSPF link-state advertisement

Link state packet (LSP)

• ID of the node that created the LSP

• Cost of link to each directly connect neighbor

• Sequence number (SEQ#)

• Time-to-live (TTL) for this packet

19

Open Shortest Path First (OSPF)

OSPF link-state advertisement

Link state packet (LSP)

• ID of the node that created the LSP

• Cost of link to each directly connect neighbor

• Sequence number (SEQ#)

• Time-to-live (TTL) for this packet

19

Open Shortest Path First (OSPF)

OSPF link-state advertisement

Link state packet (LSP)

• ID of the node that created the LSP

• Cost of link to each directly connect neighbor

• Sequence number (SEQ#)

• Time-to-live (TTL) for this packet

19

Open Shortest Path First (OSPF)

OSPF link-state advertisement

Link state packet (LSP)

• ID of the node that created the LSP

• Cost of link to each directly connect neighbor

• Sequence number (SEQ#)

• Time-to-live (TTL) for this packet

19

Open Shortest Path First (OSPF)

OSPF link-state advertisement

Link state packet (LSP)

• ID of the node that created the LSP

• Cost of link to each directly connect neighbor

• Sequence number (SEQ#)

• Time-to-live (TTL) for this packet

19

Link State v.s. Distance Vector

20

Link State v.s. Distance Vector

Link State

• High messaging overhead

• Computation complexity

Distance Vector

• Slow convergence

• Race conditions

20

21

Assumption of distance vector:

• Each node knows the cost of the link to each of its directly connected neighbors

Assumption of link state:

• Each node can find out the state of the link to its neighbors and the cost of each link

Metrics for Link Cost

#1: assign 1 to each link

#2: original ARPANET metric

• link cost == number of packets enqueued on each link

• This moves packets toward the shortest queue, not the destination!!

• Take latency or bandwidth into consideration

22

Metrics for Link Cost

#3: new ARPANET metric

• link cost == average delay over some time period

• Stamp each incoming packet with its arrival time (AT)

• Record departure time (DT)

• When link-level ACK arrives, compute

• Delay = (DT - AT) + Transmit + Latency, where transmit and Latency are static for
the link

• If timeout, reset DT to departure time for retransmission

22

Goals in Router/Switch Design

#1: Throughput

• Ability to forward as many packets per second as possible

#2: Size

• Number of input/output ports

#3: Cost

• Minimum cost per port

#4: Functionality

• Forwarding, routing, quality of service (QoS), …

23

Router Architecture Overview

Two key router functions:

• Run routing algorithms/protocol (RIP, OSPF, BGP, etc.)

• Switching datagrams from incoming to outgoing links

24

Line Card: Input Port

Physical layer: bit-level reception

25

Line Card: Input Port

Data link layer: e.g., Ethernet

25

Line Card: Input Port

Decentralized switching:

• Process common case (“fast-path”), e.g., decrement TTL, update the checksum

• Lookup output port based on routing table in input port memory

• Queue needed if datagrams arrive faster than forwarding rate into switch fabric

25

Line Card: Output Port

Queueing required when datagrams arrive from fabric
faster than the line transmission rate

26

Buffering

3 types of buffering

• Input buffering

• Fabric slower than input ports combined —> queueing may occur at input queues

• Output buffering

• Buffering when arrival rate via switch exceeds output line speed

• Internal buffering

• Can have buffer inside switch fabric to deal with limitations of fabric

What happens when these buffers fill up?

• Packets are thrown away!! This is where (most) packet loss comes from

27

Routing(Network) Processor

Run routing protocol and push forwarding table to
forward engines

Perform “slow” path processing

• ICMP error message

• IP option processing

• Fragmentation

• Packets destined to router

28

IP Router v.s. Ethernet Switch (Incomplete!)

IP Router Ethernet Switch

Layering Layer 3 Layer 2

Packet
Manipulation

Fragmentation and Reassembly; TTL
update N/A

Packet
Forwarding Based on the destination IP address

Based on destination Ethernet address;
Run the spanning tree protocol to avoid

forwarding loops

Routing Based on the routing algorithm N/A

Error
Handling Speak the ICMP protocol N/A

29

30

Terminology
1. Host

Principle

2. NIC
3. Multi-port I/O bridge

1. Layering

4. Protocol
5. RTT
6. Packet
7. Header
8. Payload
9. BDP

10. Baud rate
11. Frame/Framing
12. Parity bit
13. Checksum
14. Ethernet
15. MAC
16. (L2) Switch

17. Broadcast
2. Minimal States18. Acknowledgement

19. Timeout
20. Datagram
21. TTL
22. MTU
23. Best effort
24. (L3) Router

3. Hierarchy

25. Subnet mask
26. CIDR

29. Line card
30. Network processor

27. Converge
28. Count-to-infinity

31

Technique
1. NRZ Encoding
2. NRZI Encoding
3. Manchester Encoding
4. 4B/5B Encoding
5. Byte Stuffing
6. Byte Counting
7. Bit Stuffing
8. 2-D Parity
9. CRC

10. MAC Learning
11. Store-and-Forward
12. Cut-through
13. Spanning Tree
14. CSMA/CD
15. Stop-and-Wait
16. Sliding Window

16. Fragmentation and Reassembly
17. Path MTU discovery
18. DHCP
19. Subnetting
20. Supernetting
21. Longest prefix match
22. Distance vector routing (RIP)
23. Link state routing (OSPF)

Summary

Today’s takeaways

#1: Link state routing captures the whole network connectivity by disseminating the link
state information and runs the Dijkstra’s algorithm to calculate the shortest path

#2: Link cost can be determined by performance metrics

#3: A router has four major components: input line card, output line card, switching fabric
and network processor

Next lecture

• Inter-domain Routing

32

