Transport Introduction

Ming Liu
mgliu@cs.wisc.edu

Today

Last lecture

- How to address some limitations in the IP layer?

Today

- What functionalities does the transport layer provide?

Announcements

- Lab3 is due 11/04/2022, 11:59 PM
» Quiz3 next Tuesday

Transport Layer in the TCP/IP Model

Transport Layer in the TCP/IP Model

IP layer

Link layer

Physical layer

!

Host-to-host communications between two endpoints

Transport Layer in the TCP/IP Model

Application layer - pplitos; run as proces;;g within a host]
IP layer -

.‘ \
Link layer Host-to-host communications between two endpoints

Physical layer

Transport Layer in the TCP/IP Model

— — _ S — — — - e ——————

Application layer Applications run as processes within a host

Gy [

IP layer

[

|
|

Link layer Host-to-host communications between two endpoints |

Physical layer

Q: What functionalities does the transport layer
provide?

Q: What functionalities does the transport layer
provide?

A: Process-to-process communication channels

()

. .

System Model

Design requirements

- Support arbitrarily large message
- Support multiple application processes on a host (multiplexing)
- Support message delivery with certain guarantees

- Packet order

« Exact one copy

Limitations

- Fixed-sized socket buffer in the OS
- Fixed-sized data transmission unit in the network
- Computing and communication entities run at different speeds

System Model

Design requirements

- Support arbitrarily large message

- Support multiple application processes on a host (multiplexing)
- Support message delivery with certain guarantees

- Packet order

— — e R e ———— - ———— e SE———

Challenge: underlying network (IP) is best-effort

. Fixed-sized socket buffer in the OS
- Fixed-sized data transmission unit in the network
- Computing and communication entities run at different speeds

Q: What functionalities does the transport layer
provide?

A: Process-to-process communication channels

—_— —_— e — e i — = L — RR—

Q1: How to set up the process-to-process channel?
'Q2: How to multiplex concurrent channels over the physical link?
Q3: How to control the transmission rate?

Q4: How to achieve reliability delivery?

Q5: How to share the in-network bandwidth resources?

User Datagram Protocol (UDP)

Extend the IP service model into a process-to-process

communication service

- Best-effort
 Unreliable and unordered datagram service

User Datagram Protocol (UDP)

Extend the IP service model into a process-to-process

communication service

- Best-effort
 Unreliable and unordered datagram service

UDP is a simple message-oriented transport protocol
that is documented in RFC 768

- #1: Add multiplexing/demultiplexing

- #2: Add reliability through optional checksum

Demultiplexing Key: Port

Ports are numeric locators which enable messages to

be demultiplexed to proper processes

» Ports are addresses on individual hosts, not across the Internet

Demultiplexing Key: Port

Ports are numeric locators which enable messages to

be demultiplexed to proper processes

» Ports are addresses on individual hosts, not across the Internet

How to learn the port?

 #1: Servers have well-know ports
« Port 53= DNS
- See /etc/services on Unix

 #2: Port mapper service
- Dynamically allocated

Ports: A System Perspective

Ports are implemented as message queues

Application Application Application
process 1 process 2 process N
Ports ——»
- -
- T
Queues - —
. T
Packets

demultiplexed
UDP

UDP Header Format

0 16 31

» Port: 65536 possible ports

* Length: 65535 bytes (8 bytes header + 65527 bytes data)

10

UDP Checksum

Optional in current Internet

UDP uses the same checksum algorithm as IP

 |Internet checksum

11

UDP Checksum

Optional in current Internet

UDP uses the same checksum algorithm as IP

 |Internet checksum

UDP checksum is computed over pseudo header +
UDP header + data

11

UDP Checksum

——— __ — —

Optional in current Internet

The psuedo header consists 3 fields from the IP header: protocol number (TCP or UDP),
[IP src, IP dst, and UDP length field

- The pseudo header enables verification that message was delivered between the
correct source and destination

- IP dest address was changed during delivery, checksum would reflect this

I — = e — e — — _ —— — — —— = — —— —— I
L /

— — e — e e —————— - e ———

UDP checksum is computed over pseuo header +

|
|

UDP header + data)

— —— = = — e — — — — p— — - — — _— E—— —

|

11

UDP Checksum Example
| Decimal | By | Hex

UDP Source Port 9000 0000 0001 0100

UDP Destination Port 0000 0000 0000 1010 00 0A
UDP Length 0000 0000 0000 1010 00 0A
UDP Data 0100 1000 0110 1001

Add carry bit N

Onescomplement | | | 00000

12

UDP Checksum Example
| Decimal | By | Hex

UDP Source Port 9000 0000 0001 0100

UDP Destination Port 0000 0000 0000 1010 00 0A
UDP Length 0000 0000 0000 1010 00 0A
UDP Data 0100 1000 0110 1001

Add carry bit | 110010100011 1001 + 1 CA39 + 0001 = CA3A

One'scomplement | | 001101011100 010" 35C5
12

1
|
\

UDP in Linux

UDP(7) Linux Programmer's Manual UDP(7)

NAME top

udp - User Datagram Protocol for IPv4

SYNOPSIS top

#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/udp.h>

udp_socket = socket(AF_INET, SOCK_DGRAM, 0);

DESCRIPTION top

This is an implementation of the User Datagram Protocol described
in RFC 768. It implements a connectionless, unreliable datagram
packet service. Packets may be reordered or duplicated before
they arrive. UDP generates and checks checksums to catch
transmission errors.

When a UDP socket is created, its local and remote addresses are
unspecified. Datagrams can be sent immediately using sendto(2)
or sendmsg(2) with a valid destination address as an argument.
When connect(2) is called on the socket, the default destination
address is set and datagrams can now be sent using send(2) or
write(2) without specifying a destination address. It is still
possible to send to other destinations by passing an address to
sendto(2) or sendmsg(2). In order to receive packets, the socket
can be bound to a local address first by using bind(2).
Otherwise, the socket layer will automatically assign a free
local port out of the range defined by
/proc/sys/net/ipv4/ip_local_port_range and bind the socket to
INADDR_ANY.

e —

SEND(2)

NAME top

SYNOPSIS top

— e — e et ===

Linux Programmer's Manual SEND(2)

send, sendto, sendmsg - send a message on a socket

#include <sys/socket.h>

ssize_t send(int sockfd, const void xbuf, size_t len, int flags);

ssize_t sendto(int sockfd, const void xbuf, size_t len, int flags,
const struct sockaddr xdest _addr, socklen_t addrlen);

ssize_t sendmsg(int sockfd, const struct msghdr xmsg, int flags);

— — e —— e

RECV(2) Linux Programmer's Manual RECV(2)

NAME top

recv, recvfrom, recvmsg — receive a message from a socket

SYNOPSIS top

#include <sys/socket.h>

ssize_t recv(int sockfd, void xbuf, size_t len, int flags);

ssize_t recvfrom(int sockfd, void xrestrict buf, size_t len, int flags,
struct sockaddr xrestrict src_addr,
socklen_t xrestrict addrlen);

ssize_t recvmsg(int sockfd, struct msghdr xmsg, int flags);

13

UDP Iin Practice

Minimal specification makes UDP very flexible
- And end-to-end protocol can be built atop of UDP

Examples:

- Most commonly used in multimedia applications
- RPCs
- Many others

14

UDP Iin Practice

Minimal spec
- And end-to-end

Examples:

Most commonly L
RPCs
Many others

,[1] The QUIC Transport Protoeol Design and Internet- Scale Deployment Slgcomm 17

I*

The QUIC Transport Protocol:
Design and Internet-Scale Deployment

Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic, Dan Zhang, Fan
Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, Jeff Bailey, Jeremy Dorfman, Jim Roskind,

Joanna Kulik, Patrik Westin, Raman Tenneti, Robbie Shade, Ryan Hamilton, Victor Vasiliev,

Wan-Teh Chang, Zhongyi Shi *

Google
quic-sigcomm @ google.com

ABSTRACT

We present our experience with QUIC, an encrypted, multiplexed,
and low-latency transport protocol designed from the ground up to
improve transport performance for HTTPS traffic and to enable rapid
deployment and continued evolution of transport mechanisms. QUIC
has been globally deployed at Google on thousands of servers and
is used to serve traffic to a range of clients including a widely-used
web browser (Chrome) and a popular mobile video streaming app
(YouTube). We estimate that 7% of Internet traffic is now QUIC. We
describe our motivations for developing a new transport, the princi-
ples that guided our design, the Internet-scale process that we used
to perform iterative experiments on QUIC, performance improve-
ments seen by our various services, and our experience deploying
QUIC globally. We also share lessons about transport design and the
Internet ecosystem that we learned from our deployment.

e)

HTTP/2 shim
Application HTTP/2 - /

N J 4)
___________ R _
Security TLS QuIC

N J
7777777 —— NN J
Transport TCP (

L y UDP
,,,,,,,,,,,,,,,,,,,,,,,,,,, -
Network [IP

J

Figure 1: QUIC in the traditional HTTPS stack.

TCP (Figure 1). We developed QUIC as a user-space transport with
UDP as a substrate. Building QUIC in user-space facilitated its
deployment as part of various applications and enabled iterative

i

How does UDP address the following issues?

Q1: How to set up the process-to-process channel? \
Q2: How to multiplex concurrent channels over the physical link? ¢
Q3: How to control the transmission rate? ,
Q4: How to achieve reliability delivery? i
Q5: How to share the in-network bandwidth resources?

l

i\

15

UDP Issues

#1: Arbitrary communication

- Senders and receivers can talk to each other in any ways

#2: No reliability guarantee

- Packets can be lost/duplicated/reordered during transmission
« Checksum is not enough

#3: No resource management

« Each communication channel works as an exclusive network resource owner
- No adaptiveness support for the physical networks and applications

16

Transmission Control Protocol (TCP) — RFC793

TCP is the most widely used Internet protocol

A two-way, reliable, byte stream oriented protocol

Closely tied to the Internet Protocol (IP)

17

TCP Features

#1: Connection-oriented

- Communication happens after the connection is established

Application Application
process process
[[

Write bytes | . Read bytes
[]
TCP TCP

Transmit segments

18

TCP Features

#2: Byte-stream

« Apps write/read bytes
- TCP sends segments

Application
process
.]
Write bytes :
]
Send buffer

Transmit segments

Application
process
[
. Read bytes
]
Receive buffer

19

TCP Features

#3: Two-way communication (duplex)

Application Application
process process
[[

Write bytes | . Read bytes
[]
TCP TCP

Transmit segments

20

TCP Features

#4: keep sender from over-running receiver (flow

control)

Application Application
process process
[[

Write bytes | . Read bytes
[]
TCP TCP

Transmit segments

21

TCP Features

#5: keep sender from over-running network

(congestion control)

Application Application
process process
[[

Write bytes | . Read bytes
[]
TCP TCP

Transmit segments

22

TCP Header Format

10 16

31

SrcPort

DstPort

SequenceNum

Acknowledgment

HdrLen

0

Flags AdvertisedWindow

Checksum

UrgPtr

Options (variable)

Data

T

23

; Terminology - Principle

1. Host 17. Broadcast 33. IPv6 1. Layering
‘ 2. NIC 18. Acknowledgement 34. Multicast 2. Minimal States
3. Multi-port I/O bridge 19. Timeout 35. IGMP | 3. Hierarchy
4. Protocol 20. Datagram 36. SDN [|
- 5. RITT 21. TTL 37. (Transport) port \
6. Packet 22. MTU 38. Pseudo header |
7. Header 23. Best effort |
8. Payload 24. (L3) Router ‘ ’
~ 9.BDP 25. Subnet mask ; "
10. Baud rate 26. CIDR [‘
'11. Frame/Framing 27. Converge
12. Parity bit 28. Count-to-infinity ‘
13. Checksum 29. Line card } .
14. Ethernet 30. Network processor | |
115. MAC 31. Gateway) ’]

f
32. Private network {
e —— e e — —— e— - —— ——— = y | — e ——— — 24

© N OO0~ WN =

Z
By

Z Encoding
. NRZI| Encoding
. Manchester Encoding

. 4B/5B Encoding
. Byte Stuffing

. Byte Counting
. Bit Stuffing

. 2-D Parity

. CRC

. MAC Learning

. Store-and-Forward
. Cut-through

. Spanning Tree

. CSMA/CD

. Stop-and-Wait

. Sliding Window

16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
20.
217 .

Technique

Fragmentation and Reassembly
Path MTU discovery

DHCP

Subnetting

Supernetting

Longest prefix match

IP)

4 4

Distance vector routing (K
Link state routing (OSPF)
Boarder gateway protocol (BGP)
Network address translation (NAT)
User Datagram Protocol (UDP)
Transmission Control Protocol (TCP)

Summary

Today’s takeaways

#1: The transport layer provides process-to-process communications channels
#2: UDP offers great flexibility by only providing the multiplexing functionality

Next lecture

- TCP connection management

260

