TCP Connection
Management (1)

Ming Liu
mgliu@cs.wisc.edu

Today

Last lecture

- What functionalities does the transport layer provide?

Today

- How to setup the TCP connection?

Announcements

- Lab4 is due 12/02/2022, 11:59 PM

Transport Layer in the TCP/IP Model

— — _ S — — — - e ——————

Application layer Applications run as processes within a host

Gy [

IP layer

[

|
|

Link layer Host-to-host communications between two endpoints |

Physical layer

Q: What functionalities does the transport layer
provide?

A: Process-to-process communication channels

—_— —_— e — e i — = L — RR—

Q1: How to set up the process-to-process channel?
'Q2: How to multiplex concurrent channels over the physical link?
Q3: How to control the transmission rate?

Q4: How to achieve reliable delivery?

Q5: How to share the in-network bandwidth resources?

Q: What functionalities does the transport layer
provide?

A: Process-to-process communication channels

E— — e e m— —— e e — e — — ___ e

(Q1 How to set up the process -to- process channel’? - ﬁmi

|

'Q2: How to multiplex concurrent channels over the physical link?
Q3: How to control the transmission rate? w
Q4: How to achieve reliable delivery?
Q5: How to share the in-network bandwidth resources?

\

— — — = = e — ——— = — —_— — —— ————

UDP Issues

#1: Arbitrary communication

- Senders and receivers can talk to each other in any ways

#2: No reliability guarantee

« Packets can be lost/duplicated/reordered during transmission
- Checksum is not enough

#3: No resource management

« Each communication channel works as an exclusive network resource owner
- No adaptiveness support for the physical networks and applications

Q: What is the goal of TCP connection
management?

Q: What is the goal of TCP connection
management?

A: Dynamically create and destroy a full-duplex
communication channel between a sender
process and a receiver process for
reliable byte stream exchange

Q: What is the goal of TCP connection
management?

A: Dynamically create and destroy a full-duplex
communication channel between a sender
process and a receiver process for
reliable byte stream exchange

On-demand communication

Q: What is the goal of TCP connection
management?

A: Dynamically create and destroy a full-duplex
communication channel between a sender
process and a receiver process for
reliable byte stream exchange

On-demand communication Client <—> Server

Q: What is the goal of TCP connection
management?

A: Dynamically create and destroy a full-duplex
communication channel between a sender
process and a receiver process for
reliable byte stream exchange

On-demand communication Client <—> Server

TCP Connection Establishment

Let’s start with a naive approach

TCP Connection Establishment

Let’s start with a naive approach

Server

My (client) byte stream starts
with a sequence number = X

TCP Connection Establishment

Let’s start with a naive approach

My (client) byte stream starts

with a sequence number = X Got it, | acknowledge the sequence

number of your next byte is = X + 1

TCP Connection Establishment

Let’s start with a naive approach

My (client) byte stream starts

with a sequence number = X Got it, | acknowledge the sequence

number of your next byte is = X + 1

My (server) byte stream starts
with a sequence number = Y

TCP Connection Establishment

Let’s start with a naive approach

My (client) byte stream starts

with a sequence number = X Got it, | acknowledge the sequence

number of your next byte is = X + 1

My (server) byte stream starts
with a sequence number = Y
Got it, | acknowledge the
seqguence number of your
next byteis =Y + 1

TCP Connection Establishment

Let’s start with a naive approach

My (client) byte stream starts

with a sequence number = X Got it, | acknowledge the sequence

number of your next byte is = X + 1

My (server) byte stream starts

with a sequence number = Y

Got it, | acknowledge the

seqguence number of your
next byteis =Y + 1

iCouId we optimize a little bit?

_ — — e i —

TCP Connection Establishment

Let’s start with a naive approach

My (client) byte stream starts

with a sequence number = X Got it, | acknowledge the sequence

number of your next byte is = X + 1

My (server) byte stream starts
with a sequence number = Y
Got it, | acknowledge the
seqguence number of your
next byteis =Y + 1

TCP Connection Establishment

Let’s start with a naive approach

My (client) byte stream starts

with a sequence number = X Got it, | acknowledge the sequence

number of your next byte is = X + 1

My (server) byte stream starts
with a sequence number = Y
Got it, | acknowledge the
seqguence number of your
next byteis =Y + 1

Three-Way Handshake

Three-Way Handshake

Active participant
- A party wanting to
initiate a connection

Passive participant

« A party willing to
accept a connection

Three-Way Handshake

|
Why not start with X = Y = 0 so that we can eliminate the three-way
handshake?]

)

The Incarnation Issue

A connection (defined by a particular host and port

pair) to be reused again

Solution: initial sequence number is randomly

generated

How to implement this?

10

State Machine (event/action)

Client

Passive open

Server

11

State Machine (Step 1)

Client

Active open/SYN

Server

Passive open

11

State Machine (Step 2)

Client

Active open/SYN

Server

Closed

Passive open

LISTEN

SYN/SYN+ACK

11

State Machine (Step 3)

Client

Active open/SYN

SYN+ACK/ACK

ESTABLISHED

Server

Passive open

SYN/SYN+ACK

ACK

ESTABLISHED

11

TCP Connection Establishment Summary

Closed S

YN, Sequ encen, Closed

m =X LISTEN
SYN SENT _N SYN RCVD
_ ACK sequenceNUT, -
S\(N - , X + 1
ledgement =
=STABLISHED| AcknoW

ESTABLISHED

12

Revisit the TCP Header

0 4 10 16 31
SrcPort DstPort

.

L SequenceNum ‘

(LAckﬁngledgm:ht

HdrLen 0 ~ Flags) AdvertisedWindow

e R S S I S— ——— S ——— ———

+ SYN/FIN -> TCP connection establishment and teardown
'« ACK -> Acknowledgement is valid

'» URG -> The segment contains urgent data. UrgPtr will be setup
« PUSH -> Notify the receiving process

« RESET -> The receiving side gets confused information

Revisit the TCP header

0 4 10 16

SrcPort DstPort

S

LL SequenceNum |}

Acknowledgment

HdrLen| O Flags AdvertisedW

Checksum

o [f SYN flag is set, this is the initial sequence

e =—___- — = —

number. The start of a byte stream;

 If SYN flag is clear, this is the accumulated

sequence number of the first data byte of this

segment for the current session;

Options (variable)

Data

L T
— N

13

Revisit the TCP header

0 4 10 16

31

SrcPort

DstPort

SequenceNum

. Acknowledgment |

HdrLen 0

Flags AdvertisedW

Checksum

UrgPtr

Options (variable)

\/\/\/\/\/\/\/
T N\ T —

Data |

e = — e —

. If ACK flag is set, the value of this field is the |
next sequence number that the sender of the
ACK is expecting. This acknowledges receipt
of all prior bytes (if any)

» The first ACK sent by each end acknowledges
the other ends’s initial sequence number itself,|
but no data

— S e =

13

0 N O O & WO DN =

. Host

. NIC
. Multi-port I/0O bridge

. Protocol
.RTT

. Packet
. Header

. Payload
. BDP
. Baud rate

. Frame/Framing
. Parity bit

. Checksum

. Ethernet

. MAC

Terminology

17. Broadcast

18. Acknowledgement
19. Timeout

20. Datagram

21. TTL

22. MTU

23. Best effort

24. (L3) Router

25. Subnet mask
26. CIDR

27. Converge

28. Count-to-infinity
29. Line card

33.
34.
39.

30.
37.
38.
39.

40.

30. Network processor

31. Gateway
32. Private network

IPvo
Multicast
IGMP

SDN
(Transport) port

Pseudo header
SYN/ACK

Incarnation

- Principle
1. Layering
| 2. Minimal States

\

3. Hierarchy

© N OO0~ WN =

Z
By

Z Encoding
. NRZI| Encoding
. Manchester Encoding

. 4B/5B Encoding
. Byte Stuffing

. Byte Counting
. Bit Stuffing

. 2-D Parity

. CRC

. MAC Learning

. Store-and-Forward
. Cut-through

. Spanning Tree

. CSMA/CD

. Stop-and-Wait

. Sliding Window

16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
20.
27 .
28.

Technique - +

Fragmentation and Reassembly ,
Path MTU discovery i"
DHCP

Subnetting

Supernetting ,
Longest prefix match |
Distance vector routing (RIP)
Link state routing (OSPF) \
Boarder gateway protocol (BGP) ‘
Network address translation (NAT) |
User Datagram Protocol (UDP) N

i b

Transmission Control Protocol (TCP)
Three-way Handshake

- - — — 15

Summary

Today’s takeaways

#1: TCP connection setup uses a three-way handshake to build a duplex channel
#2: The three-way handshake can be implemented via a state machine

Next lecture

« TCP connection teardown

16

