
Ming Liu

mgliu@cs.wisc.edu

Introduction to Computer Networks

CS640

https://pages.cs.wisc.edu/~mgliu/CS640/F22/

TCP Connection
Management (I)

1

Today

2

Last lecture

• What functionalities does the transport layer provide?

Today

• How to setup the TCP connection?

Announcements

• Lab4 is due 12/02/2022, 11:59 PM

Transport Layer in the TCP/IP Model

Physical layer

Link layer

IP layer

Transport layer

Application layer

3

Host-to-host communications between two endpoints

Applications run as processes within a host

Q: What functionalities does the transport layer
provide?

4

A: Process-to-process communication channels

Q1: How to set up the process-to-process channel?

Q2: How to multiplex concurrent channels over the physical link?

Q3: How to control the transmission rate?

Q4: How to achieve reliable delivery?

Q5: How to share the in-network bandwidth resources?

Q: What functionalities does the transport layer
provide?

4

A: Process-to-process communication channels

Q1: How to set up the process-to-process channel?

Q2: How to multiplex concurrent channels over the physical link?

Q3: How to control the transmission rate?

Q4: How to achieve reliable delivery?

Q5: How to share the in-network bandwidth resources?

UDP Issues

#1: Arbitrary communication

• Senders and receivers can talk to each other in any ways

#2: No reliability guarantee

• Packets can be lost/duplicated/reordered during transmission

• Checksum is not enough

#3: No resource management

• Each communication channel works as an exclusive network resource owner

• No adaptiveness support for the physical networks and applications

5

Q: What is the goal of TCP connection
management?

6

Q: What is the goal of TCP connection
management?

A: Dynamically create and destroy a full-duplex
communication channel between a sender

process and a receiver process for
reliable byte stream exchange

6

On-demand communication

Q: What is the goal of TCP connection
management?

A: Dynamically create and destroy a full-duplex
communication channel between a sender

process and a receiver process for
reliable byte stream exchange

6

On-demand communication

Q: What is the goal of TCP connection
management?

A: Dynamically create and destroy a full-duplex
communication channel between a sender

process and a receiver process for
reliable byte stream exchange

6

Client <—> Server

On-demand communication

Q: What is the goal of TCP connection
management?

A: Dynamically create and destroy a full-duplex
communication channel between a sender

process and a receiver process for
reliable byte stream exchange

6

Client <—> Server

Client and server agree on the start of
byte steams for two directions

TCP Connection Establishment

Let’s start with a naive approach

Client Server

7

TCP Connection Establishment

Let’s start with a naive approach

Client Server

My (client) byte stream starts
with a sequence number = X

7

TCP Connection Establishment

Let’s start with a naive approach

Client Server

Got it, I acknowledge the sequence
number of your next byte is = X + 1

My (client) byte stream starts
with a sequence number = X

7

TCP Connection Establishment

Let’s start with a naive approach

My (client) byte stream starts
with a sequence number = X

Client Server

Got it, I acknowledge the sequence
number of your next byte is = X + 1

My (server) byte stream starts
with a sequence number = Y

7

TCP Connection Establishment

Let’s start with a naive approach

My (client) byte stream starts
with a sequence number = X

Client Server

Got it, I acknowledge the sequence
number of your next byte is = X + 1

My (server) byte stream starts
with a sequence number = Y

Got it, I acknowledge the
sequence number of your

next byte is = Y + 1

7

TCP Connection Establishment

Let’s start with a naive approach

My (client) byte stream starts
with a sequence number = X

Client Server

Got it, I acknowledge the sequence
number of your next byte is = X + 1

My (server) byte stream starts
with a sequence number = Y

Got it, I acknowledge the
sequence number of your

next byte is = Y + 1
Could we optimize a little bit?

7

TCP Connection Establishment

Let’s start with a naive approach

My (client) byte stream starts
with a sequence number = X

Client Server

Got it, I acknowledge the sequence
number of your next byte is = X + 1

My (server) byte stream starts
with a sequence number = Y

Got it, I acknowledge the
sequence number of your

next byte is = Y + 1

7

TCP Connection Establishment

Let’s start with a naive approach

My (client) byte stream starts
with a sequence number = X

Client Server

Got it, I acknowledge the sequence
number of your next byte is = X + 1

My (server) byte stream starts
with a sequence number = Y

Got it, I acknowledge the
sequence number of your

next byte is = Y + 1

7

Three-Way Handshake

SYN, SequenceNum = X

Client Server

SYN + ACK, Sequence
Num = Y

Acknowledge
ment = X + 1

ACK, Acknowledgement = Y + 1

8

Three-Way Handshake

SYN, SequenceNum = X

Client Server

SYN + ACK, Sequence
Num = Y

Acknowledge
ment = X + 1

ACK, Acknowledgement = Y + 1

Active participant

•A party wanting to
initiate a connection

Passive participant

•A party willing to
accept a connection

8

Three-Way Handshake

SYN, SequenceNum = X

Client Server

SYN + ACK, Sequence
Num = Y

Acknowledge
ment = X + 1

ACK, Acknowledgement = Y + 1

 Why not start with X = Y = 0 so that we can eliminate the three-way
handshake?

8

A connection (defined by a particular host and port
pair) to be reused again

The Incarnation Issue

Solution: initial sequence number is randomly
generated

9

How to implement this?

SYN, SequenceNum = X

Client Server

SYN + ACK, Sequence
Num = Y

Acknowledge
ment = X + 1

ACK, Acknowledgement = Y + 1

10

State Machine (event/action)

Closed

Client

Closed

Server

LISTEN

Passive open

11

State Machine (Step 1)

Closed

Client

Closed

Server

SYN_SENT

Active open/SYN

LISTEN

Passive open

11

State Machine (Step 2)

Closed

Client

Closed

Server

SYN_SENT

Active open/SYN

LISTEN

Passive open

SYN_RCVD

SYN/SYN+ACK

11

State Machine (Step 3)

Closed

Client

Closed

Server

SYN_SENT

Active open/SYN

LISTEN

Passive open

SYN_RCVD

SYN/SYN+ACK

ESTABLISHED

SYN+ACK/ACK

ESTABLISHED

ACK

11

TCP Connection Establishment Summary

SYN, SequenceNum = X

Client Receiver

SYN + ACK, Sequence
Num = Y

Acknowledge
ment = X + 1

ACK, Acknowledgement = Y + 1

Closed Closed

SYN_SENT SYN_RCVD

ESTABLISHED

LISTEN

ESTABLISHED
12

Revisit the TCP Header

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

• SYN/FIN —> TCP connection establishment and teardown

• ACK -> Acknowledgement is valid

• URG —> The segment contains urgent data. UrgPtr will be setup

• PUSH -> Notify the receiving process

• RESET -> The receiving side gets confused information

13

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

Revisit the TCP header

• If SYN flag is set, this is the initial sequence
number. The start of a byte stream;

• If SYN flag is clear, this is the accumulated
sequence number of the first data byte of this
segment for the current session;

13

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

Revisit the TCP header

• If ACK flag is set, the value of this field is the
next sequence number that the sender of the
ACK is expecting. This acknowledges receipt
of all prior bytes (if any)

• The first ACK sent by each end acknowledges
the other ends’s initial sequence number itself,
but no data

13

14

Terminology
1. Host

Principle

2. NIC
3. Multi-port I/O bridge

1. Layering

4. Protocol
5. RTT
6. Packet
7. Header
8. Payload
9. BDP

10. Baud rate
11. Frame/Framing
12. Parity bit
13. Checksum
14. Ethernet
15. MAC
16. (L2) Switch

17. Broadcast
2. Minimal States18. Acknowledgement

19. Timeout
20. Datagram
21. TTL
22. MTU
23. Best effort
24. (L3) Router

3. Hierarchy

25. Subnet mask
26. CIDR

29. Line card
30. Network processor

27. Converge
28. Count-to-infinity

31. Gateway
32. Private network

33. IPv6
34. Multicast
35. IGMP
36. SDN
37. (Transport) port
38. Pseudo header

40. Incarnation
39. SYN/ACK

15

Technique
1. NRZ Encoding
2. NRZI Encoding
3. Manchester Encoding
4. 4B/5B Encoding
5. Byte Stuffing
6. Byte Counting
7. Bit Stuffing
8. 2-D Parity
9. CRC

10. MAC Learning
11. Store-and-Forward
12. Cut-through
13. Spanning Tree
14. CSMA/CD
15. Stop-and-Wait
16. Sliding Window

16. Fragmentation and Reassembly
17. Path MTU discovery
18. DHCP
19. Subnetting
20. Supernetting
21. Longest prefix match
22. Distance vector routing (RIP)
23. Link state routing (OSPF)
24. Boarder gateway protocol (BGP)
25. Network address translation (NAT)
26. User Datagram Protocol (UDP)
27. Transmission Control Protocol (TCP)
28. Three-way Handshake

Summary

Today’s takeaways

#1: TCP connection setup uses a three-way handshake to build a duplex channel

#2: The three-way handshake can be implemented via a state machine

Next lecture

• TCP connection teardown

16

