TCP Connection
Management (11)

Ming Liu
mgliu@cs.wisc.edu

Today

Last lecture

- How to setup the TCP connection?

Today

- How to tear down the TCP connection?

Announcements

- Lab4 is due 12/02/2022, 11:59 PM

Q: What is the goal of TCP connection
management?

A: Dynamically create and destroy a full-duplex
communication channel between a sender
process and a receiver process for
reliable byte stream exchange

On-demand communication Client <—> Server

TCP Connection Establishment Summary

Closed SYN Closed
Sequ ose
onceNum < x | LisTeN
SYN_SENT _N sYN_ RcvD
_ ACK sequenceNUT, :
S\(N - , X + 1
ledgement =
ESTABLISHED| — AcknoW

ESTABLISHED

TCP Connection Establishment Summary

Closed
LISTEN

Connection Termination

Three cases:

« Case #1: One-side closes first
- Case #2: Both sides close simultaneously
- Case #3: Both sides close simultaneously (special)

Case 1: One-side Closes First

4-way handshake

Active participant

Passive participant

Case 1: One-side Closes First

4-way handshake

Active participant

Passive participant

| have no more data to send.
My last sequence number = X

Case 1: One-side Closes First

4-way handshake

Active participant Passive participant

| have no more data to send.
My last sequence number = X

Got it, | acknowledge the sequence
number of your next byte is = X + 1

Case 1: One-side Closes First

4-way handshake

Active participant Passive participant

| have no more data to send.
My last sequence number = X

Got it, | acknowledge the sequence
number of your next byte is = X + 1

| also have no more data to send.
My last sequence number = Y

Case 1: One-side Closes First

4-way handshake

Active participant Passive participant

| have no more data to send.
My last sequence number = X

Got it, | acknowledge the sequence
number of your next byte is = X + 1

| also have no more data to send.
My last sequence number = Y
Got it, | acknowledge the
seqguence number of your
next byteis =Y + 1

Case 1: One-side Closes First

4-way handshake

Active participant Passive participant
|

Case 1: One-side Closes First

4-way handshake

Active participant Passive participant
|

= _ ==

‘ Could we do a 3-way handshake?

————————— —— p— = — R _ —

Case 1: State Machine Transition

Client Server

ESTABLISHED ESTABLISHED

Case 1: State Machine Transition (Step 1)

Client Server

ESTABLISHED ESTABLISHED

/FIN

FIN_WAIT_"

Case 1: State Machine Transition (Step 1)

Client Server

ESTABLISHED ESTABLISHED

FINJACK

CLOSE_WAIT

Close/FIN

FIN_WAIT_"

Case 1: State Machine Transition (Step 2)

Client Server

ESTABLISHED ESTABLISHED

FINJACK

CLOSE_WAIT

Close/FIN

FIN_WAIT_"

FIN_WAIT_2

Case 1: State Machine Transition (Step 3)

Client Server

ESTABLISHED ESTABLISHED

FINJACK

CLOSE_WAIT

Close/FIN

LAST_ACK

Close/FIN

FIN_WAIT_"

FIN_WAIT_2

10

Case 1: State Machine Transition (Step 3)
Client Server

ESTABLISHED ESTABLISHED

Close/FIN
FIN/JACK

FIN_WAIT_T CLOSE WAIT

FIN_WAIT_2 Close/FIN
LAST_ACK

FIN/JACK TIME_WAIT

10

Case 1: State Machine Transition (Step 4)

Client Server

ESTABLISHED ESTABLISHED

Close/FIN
FIN/JACK

FIN_VWAIT_1 CLOSE WAIT

FIN_WAIT_2 Close/FIN
TIME_WAIT LAST_ACK

ACK

FINJACK

CLOSED

11

Case 1: State Machine Transition (Step 4)

Client Server

ESTABLISHED ESTABLISHED

Close/FIN
FIN/JACK

FIN_VWAIT_1 CLOSE WAIT

FIN_WAIT_2 Close/FIN
TIME_WAIT LAST_ACK

Timeout after two ALK
segment lifetimes

FINJACK

CLOSED

CLOSED

11

Case 1: State Machine Transition (Step 4)

Client Server
i . -
+ Maximum segment lifetime = 60s \
) . L. |
/proc/sys/net/ipv4/tcp_fin_timeout CWAIT

int sfd = socket(domain, socktype, 0);

int optval = 1; |
setsockopt(sfd, SOL_SOCKET, SO_REUSEPORT, &optval, sizeof(optval));

bind(sfd, (struct sockaddr x) &addr, addrlen);]

L - _ : o ey
CLOSED CLOSED

11

TCP Connection Termination (Case1) Summary

Active participant Passive participant

ESTABLISHED

F
IN, Sequer coNum - ESTABLISHED
FIN_WAIT_1
CLOSE_WAIT
LAST_ACK
FIN_WAIT_2
TIME_WAIT

CLOSED CLOSED

12

Case 2: Both Sides Close Simultaneously

Active participant Passive participant

| have no more data to send. | also have no more data to send. My
My last sequence number = X » last sequence number = Y

Got it, | acknowledge the Got it, | acknowledge the

sequence number of your » sequence number of your

next byte is = Y+ 1 next byte is = X + 1

13

Case 2: Both Sides Close Simultaneously

Active participant Passive participant

13

Case 2: State Machine Transition (Step 1)

Client Server

ESTABLISHED ESTABLISHED

14

Case 2: State Machine Transition (Step 1)

Client Server

ESTABLISHED

ESTABLISHED

Close/FIN

FIN_WAIT_"

Close/FIN

FIN_WAIT_1

14

Case 2: State Machine Transition (Step 2)

Client Server

ESTABLISHED

ESTABLISHED

Close/FIN Close/FIN

FIN _WAIT_1 FIN _WAIT_1

15

Case 2: State Machine Transition (Step 3)

Client Server

ESTABLISHED

ESTABLISHED

Close/FIN Close/FIN

INACE FIN/ACK

ACK

16

Client

ESTABLISHED

Close/FIN

FIN_WAIT_"

FINJACK

CLOSING

ACK

TIME_WAIT

Timeout after two
segment lifetimes

CLOSED

Server

ESTABLISHED

CLOSING

ACK

CLOSED

Case 2: State Machine Transition (Step 4)

Close/FIN

FIN_WAIT_1

FINJACK

TIME_WAIT

Timeout after two

segment lifetimes
17

TCP Connection Termination (Case 2) Summary

Active participant Passive participant

ESTABLISHED ESTABLISHED
FIN_WAIT_1 FIN_WAIT_1
CLOSING CLOSING

CLOSED CLOSED

18

Case 3: Both Sides Close Simultaneously, but

Active participant Passive participant

| have no more data to send. | also have no more data to send. My
My last sequence number = X » last sequence number = Y

Got it, | acknowledge the Got it, | acknowledge the

seguence number of your » seguence number of your

next byte Is = Y+ 1 next byte is = X + 1

19

Case 3: Both Sides Close Simultaneously, but

Active participant Passive participant

| have no more data to send.
My last sequence number = X

| also have no more data to send. |
acknowledge the sequence number
of your next byte is = X + 1. And my

Got it, | acknowledge the last sequence number =Y

sequence number of your
next byte is = Y+ 1

19

Case 3: Both Sides Close Simultaneously, but

Active participant Passive participant

19

Case 3: State Machine Transition

Client Server

ESTABLISHED ESTABLISHED

20

Case 3: State Machine Transition (Step 1)

Client Server

ESTABLISHED

ESTABLISHED

Close/FIN

FIN_WAIT_"

Close/FIN

FIN_WAIT_1

FINACK

21

Case 3: State Machine Transition (Step 2)

Client Server

ESTABLISHED

ESTABLISHED

Close/FIN

FIN_WAIT_"

ACK+FIN/ACK

Close/FIN

FIN WAIT 1
CLOSING FIN/JACK
ACK
TIME _WAIT C TIME WAIT

22

Case 3: State Machine Transition (Step 3)

Client Server

ESTABLISHED

ESTABLISHED

Close/FIN

FIN_WAIT_"

ACK+FIN/ACK

Close/FIN

FINIACK
ACK

Timeout after two

segment lifetimes
23

TIME_WAIT

Timeout after two
segment lifetimes

CLOSED CLOSED

TCP Connection Termination (Case 3) Summary

Active participant Passive participant

ESTABLISHED ESTABLISHED

FIN_WAIT_1 2 Sequencenym, . 5 v
N - 1

FIN, SeuenCeNum; 1
Aoknowledgement =

TIME_WAIT

ACknOWIedgement -y
= Yiq

CLOSED CLOSING
CLOSED

24

TCP State Transition Diagram Overall

CLOSED

f

Passive open Close

'

LISTEN

Active open/SYN

(

SYN/SYN + AC Send/SYN
SYN RCVD |3 SYN/SYN + ACK =l SYN SENT
\ FN + ACK/ACK
Close/FIN ESTABUSHED,
' Closelw MN/ACK
FIN. WAIT 1 [° | CLOSE WAIT
FIN/ACK
ACK Close/FIN
X
FIN. WAIT 2 CLOSING LAST ACK
l ACK Timeout ?therttwo l ACK
FIN/ACK segment liiretimes

=~ TIME_WAIT *[CLOSED

TCP State Transition Diagram Overall

Active open/SYN

LISTEN

SYN/SYN ﬁ/ wsm
) SYN/SYN + ACK .
Acq SYN + ACK/ACK

Close/FIN ESTABLISHEd

SYN_RCVD SYN_SENT

Y Close/FIN FIN/ACK

FIN._WAIT 1 CLOSE_WAIT

FIN/ACK
"C}F Close/FIN

X

jACK

FIN_WAIT 2

k FIN/ACK

CLOSING LAST ACK

l ACK Timeout after two l ACK
segment lifetimes

=~ TIME_WAIT ’[CLOSED

25

TCP State Transition Diagram Overall

CLOSED
4 Active open/SYN
Passive open Close
LISTEN
SYN/SYN ﬁ/ wsm
SYN RCVD |3 SYN/SYN + ACK =l SYN SENT
ACK SYN + ACK/ACK

Close/FIN ESTABLISHEd

' cmaM QN/ACK

FIN._WAIT 1 CLOSE_WAIT

FIN/ACK
ACK Close/FIN

FIN. WAIT 2 CLOSING LAST ACK

l ACK Timeout :t:n:‘tfert.two l ACK
EIN/ACK segment lifetimes

TIME_WAIT '[CLOSED

Revisit the TCP Header

0 4 10 16 31
SrcPort DstPort
. SequenceNum
HdrLen 0
Checksum UrgPtr

Options (variable)

Data

T

260

Revisit the TCP Header

0 4 10 16 31
SrcPort DstPort

.

L SequenceNum ‘

(LAckﬁngledgm:ht

HdrLen 0 ~ Flags) AdvertisedWindow

e R S S I S— ——— S ——— ———

+ SYN/FIN -> TCP connection establishment and teardown
'« ACK -> Acknowledgement is valid

'» URG -> The segment contains urgent data. UrgPtr will be setup
« PUSH -> Notify the receiving process

« RESET -> The receiving side gets confused information

TCP Connection Management Summary

#1: Connection setup is asymmetric

- One side does a passive open the other side does an active open

27

TCP Connection Management Summary

#1: Connection setup is asymmetric

- One side does a passive open the other side does an active open

#2: Connection teardown is symmetric

« Each side has to close the connection independently

27

TCP Connection Management Summary

#1: Connection setup is asymmetric

- One side does a passive open the other side does an active open

#2: Connection teardown is symmetric

« Each side has to close the connection independently

#3: Most of the states schedule a timeout

 The timeout event is triggered when the expected response does not happen

27

TCP Connection Management Summary

#1: Connection setup is asymmetric

- One side does a passive open the other side does an active open

#2: Connection teardown is symmetric

« Each side has to close the connection independently

— —— — — S ————————

TCP(UDP) Connection = Flow
* The network processing granularity in the transport layer
* Five tuples = (src IP, dst IP, protocol number, src port, dst port)

27

How TCP solves the first issue?

#1: Arbitrary communication J
S

- Senders and receivers can talk to each other in any way

#2: No reliability guarantee

» Packets can be lost/duplicated/reordered during transmission
- Checksum is not enough

#3: No resource management

- Each communication channel works as an exclusive network resource owner
- No adaptiveness support for the physical networks and applications

28

TCP avoids arbitrary communication but exposes
non-negligible attacking interfaces.

29

SYN Flood

The TCP connection establishment phase starts with a
standardized three-way handshake. The client sends

an SYN packet. The server responds with an SYN-ACK.

30

SYN Flood

The TCP connection establishment phase starts with a
standardized three-way handshake. The client sends

an SYN packet. The server responds with an SYN-ACK.

rt. Waiting for ACK.
rt. Waiting for ACK.
rt. Waiting for ACK.
rt. Waiting for ACK.

30

SYN Flood

The TCP connection establishment phase starts with a
standardized three-way handshake. The client sends

an SYN packet. The server responds with an SYN-ACK.

o _ _ —— ————————————————— e k& - — —— ———

" An attacker sends overwhelming numbers of SYN requests and intentionally

never responds to the servers SYN-ACK messages.

(
Wi

30

; Terminology - Principle

1. Host 17. Broadcast 33. IPv6 1. Layering
‘ 2. NIC 18. Acknowledgement 34. Multicast | 2. Minimal States
3. Multi-port I/O bridge 19. Timeout 35. IGMP | 3. Hierarchy
4. Protocol 20. Datagram 36. SDN [|
- 5.RTT 21. TTL 37. (Transport) port \
6. Packet 22. MTU 38. Pseudo header |
7. Header 23. Best effort 39. SYN/ACK |
8. Payload 24. (L3) Router 40. Incarnation N
- 9.BDP 25. Subnet mask 41. Flow :
10. Baud rate 26. CIDR 42. SYN flood . *
11. Frame/Framing 27. Converge
12, Parity bit 28. Count-to-infinity ‘
13. Checksum 29. Line card } .
14. Ethernet 30. Network processor | |
(15. MAC 31. Gateway) ’]

f
32. Private network {
p— e — — ——— —— p— e — — — — = a e T ——"—" — 31

© N OO0~ WN =

Z
By

Z Encoding
. NRZI| Encoding
. Manchester Encoding

. 4B/5B Encoding
. Byte Stuffing

. Byte Counting
. Bit Stuffing

. 2-D Parity

. CRC

. MAC Learning

. Store-and-Forward
. Cut-through

. Spanning Tree

. CSMA/CD

. Stop-and-Wait

. Sliding Window

16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
20.
27 .
28.
29.

Technique -]

Fragmentation and Reassembly ,
Path MTU discovery i"
DHCP

Subnetting

Supernetting ,
Longest prefix match |
Distance vector routing (RIP)
Link state routing (OSPF) \
Boarder gateway protocol (BGP) ‘
Network address translation (NAT) |
User Datagram Protocol (UDP) l
Transmission Control Protocol (TCP)

i b

Three-way Handshake
TCP state transition }

— —_— - — 30

Summary

Today’s takeaways

#1: TCP teardown is symmetric and presents three different cases
#2: TCP introduces a number of running states to deal with different kinds of
communication scenarios

Next lecture
« TCP reliability support

33

