TCP Reliability Support

Ming Liu
mgliu@cs.wisc.edu

Today

Last lecture

- How to tear down the TCP connection?

Today

- How to ensure reliable data delivery?

Announcements

- Lab4 Is due 12/02/2022, 11:59 PM
« Final exam: Dec 17, 2022 5:05 PM - 7:05 PM

Q: What is the goal of TCP reliability
mechanisms?

Q: What is the goal of TCP reliability
mechanisms?

A: Byte stream @sender = Byte stream @receiver

Q: What is the goal of TCP reliability
mechanisms?

A: Byte stream @sender = Byte stream @receiver

» #1: TCP segments are delivered with no loss/duplication
» #2. TCP segments are delivered in order
» #3: The sender Is not over-running the receiver capability

Q: What is the goal of TCP reliability
mechanisms?

A: Byte stream @sender = Byte stream @receiver

 #1: TCP segments are delivered with no loss/duplication
» #2: TCP segments are delivered in order
» #3: The sender Is not over-running the receiver capabillity

—— — e e — e —

TCP Segment: The smallest data transmission unit under TCP, consist
of a (segment) header and a data payload.

__ ___ —_—

1t

A TCP Send/Recv Example

Sending application Receiving application

TCP TCP

Send buffer Recv buffer

A TCP Send/Recv Example

TCP

B Recv buffer S

A TCP Send/Recv Example

Sending application Receiving application

TCP

B Send buffer S B Recvbuifer B

1 Send/Recv buffer is fixed sized
, (.e., MaxSendBuffer and MaxRcvBuffer)

| _

#1: How to deal with segment loss/duplication?

TCP

B Recv buffer S

#1: How to deal with segment loss/duplication?

Q3: How to ensure reliable frame delivery? AN

A: Two key ideas:

L9 #1: Acknowledgment (ACK) — notify the sender of the
receipt of a frame
 #2: Timeout — wait for a reasonable amount of time and
AN generate a signal y.

Where? When? -

Acknowledgment

An acknowledgment (ACK) is a packet sent by one

host Iin response to a packet it has received

Acknowledgment

An acknowledgment (ACK) is a packet sent by one

host Iin response to a packet it has received

- Making a packet an ACK is simply a matter of changing a field in the transport header
- Data can be piggybacked in ACKs

0 4 10 16 31
SrcPort DstPort

Data (SequenceNum)

SequenceNum

Acknowledgment

Sender Receiver HdrLen 0 Flags AdvertisedWindow
Checksum UrgPtr

Options (variable)

Data

Acknowledgement L
— N T

Timeout

A timeout is a signal to a packet that was sent but has

not received its ACK within a specified time frame

« The packet will be transmitted if a timeout is triggered

— — — p— —— — — [—— E— — — —

~ How are timers set?

_ — = = — e = - —— — — e — e ———

Timeout Setup

RTT: the delay between transmission and receipt of

packets between hosts

RTT can be used to estimate the timeout period

EWNMA for RTT Estimation

EWMA: exponentially weighted moving average

EWNMA for RTT Estimation

EWMA: exponentially weighted moving average

#1: Measure SampleRTT for each packet/ACK pair

EWNMA for RTT Estimation

EWMA: exponentially weighted moving average

#1: Measure SampleRTT for each packet/ACK pair

#2: Compute the weighted average of RTT
- EstimateRTT = alpha x EstimateRTT + beta x SampleRTT, where alpha+beta = 1
* 0.8 <= alpha <= 0.9
* 0.1 <= beta <= 0.2

EWNMA for RTT Estimation

EWMA: exponentially weighted moving average

#1: Measure SampleRTT for each packet/ACK pair

#2: Compute the weighted average of RTT

- EstimateRTT = alpha x EstimateRTT + beta x SampleRTT, where alpha+beta = 1
* 0.8 <= alpha <= 0.9
* 0.1 <= beta <= 0.2

#3: Set timeout based on EstimateRTT
« TimeOut = 2 x EstimateRTT

Stop-and-Wait Revisited

Send the next packet only if the last one is

successfully delivered Sender Receiver

Acknowledgment

« Where: receiver
- When: after a valid packet is being received

Timeout

« Where: sender

- When: after the issuing packet not being ACKed for a certain time

10

Stop-and-Wait Revisited

Send the next packet only if the last one is

successfully delivered

Sender Recelver
Benefits:
» Sequence numbers help avoid duplicated packets 1
» No re-ordering: one outgoing packet at a time]
. The receiver is not overwhelmed
. — Y == |

|
Problem:

l
- How to keep the communication channel full?]

__ _ —

10

Solution: Sliding Window

Allow multiple outstanding (un-ACKed) frames

Sender Receiver

\
i

11

Solution: Sliding Window

Allow multiple outstanding (un-ACKed) frames

Sender

S S

—

Receiver

—

11

Buffering requirements on Sender and Receiver

#1: The sender needs to buffer data so that if data is

lost, it can be resent

#2: The receiver needs to buffer data so that if data is
received out of order, it can be held until all packets

are received

12

Sliding Window — Sender

Assign sequence number to each segment (SeqgNum)

Maintain three state variables:

- Last byte written by the application (LastByteWritten)
- Last byte being acknowledged (LastByteAcked)

- Last byte sent (LastByteSent)

- : - - TCP
Three variables manipulation: LastByteWritten
» Advance LastByteWritten when an app writes ._-.
- Advance LastByteAcked when a consecutive ACK arrived LastByteSent

- Advance LastByteSent when the segments are sent
LastByteAcked

13

Sliding Window Invariants @Sender

Invariants:

- LastByteSent <=LastByteWritten
- LastByteAcked <= LastByteSent

LastByteWritten TCP

LastByteSent
LastByteAcked

Buffered bytes:
- |LastByteWritten - LastByteAcked| <= MaxSendBuffer

14

Sliding Window — Receiver

Maintain three state variables:

- Last byte read by the application (LastByteRead)

- Last byte received (LastByteRcvd) TCP
LastByteRead

« Next byte supposed to be received (NextByteExpected)

- - - NextByteExpected LastByteRcvd
Three variables manipulation: e g

- Advance LastByteRead when an app reads
- Advance LastByteRcvd when the segment is received
- Advance NextByteExpected when the next expected segment is received

15

Sliding Window Invariants @Receiver

Invariants:
- LastByteRead < NextByteExpected
- NextByteExpected <= LastByteRcvd + 1 TCP
LastByteRead

NextByteExpected LastByteRcvd

Buffered bytes:
-|LastByteRcvd - LastByteRead| <= MaxRcvBuffer

16

#2: How to deal with the out-of-order delivery?

17

#2: How to deal with the out-of-order delivery?

Sliding Window @ Receiver

- If SeqNum of a segment is within the range [LastByteRead, LastByteRcvd] -> accept
- If SeqNum of a segment is less than LastByteRead -> discarded
- If a segment causes the required buffer data larger than MaxRcvBuffer -> discarded

- LastByteRcvd - LastByteRead > MaxRcvBuffer

Data is delivered only if there is a continuous byte

stream without gap

17

#3: How to not over-run the receiver?

Flow control

- Prevent server from overflowing the receiver’s buffer

18

Solution: the receiver advertises this window

Receiving application

LastByteRead

TCP

NextByteExpected LastByteRcvd

20

Solution: the receiver advertises this window

v

=== e R —— — S ————— — R — _ ——

AdvertisedWindow = MaxRcvBuffer - (LastByteRcvd - LastByteRead)

Receiving application

LastByteRead TCP

NextByteExpected LastByteRcvd

20

«

Solution: the receiver advertises this window

|

v

—— e —— e ———————————— e — e —————— - — —

A:dvertisedWindow = MaxRcvBuffer - ((NextByteExect 1) - tyed

—— - — — — — — _

Receiving application

LastByteRead TCP

NextByteExpected LastByteRcvd

20

Flow Control: Sender Side

0 4 10 16 31
SrcPort DstPort
SequenceNum
Acknowledgment

HdrLen 0 Flags

Checksum

UrgPtr

Options (variable)

Data

N

21

Flow Control: The sender controls the rate

Sending side @QTCP

- LastByteSent - LastByteAcked <= AdvertisedWindow
- EffectiveWindow = AdvertisedWindow - (LastByteSent - LastByteAcked)

LastByteWritten TCP

LastByteSent
LastByteAcked

22

Flow Control: The sender controls the rate

Sending side @Application

- LastByteWritten - LastByteAcked <= MaxSendBuffer
- Block sender if (LastByteWritten - LastByteAcked) + y > MaxSendBuffer

LastByteWritten TCP

LastByteSent
LastByteAcked

23

Flow Control Discussion

The receiver

- Always send ACK in response to arriving data segment

The sender

» Persist sending one byte segment when AdvertiseWindow = o

24

How TCP solves the first issue?

#1: Arbitrary communication /
S

- Senders and receivers can talk to each other in any way

#2: No reliability guarantee

- Packets can be lost/duplicated/reordered during transmission
« Checksum is not enough

v

25

0 N O O & WO DN =

. Host

. NIC

. Multi-port I/0O bridge
. Protocol

. RTT

. Packet

. Header

. Payload
. BDP
. Baud rate

. Frame/Framing
. Parity bit

. Checksum

. Ethernet

. MAC

Terminology

17. Broadcast

18. Acknowledgement
19. Timeout

20. Datagram

21. TTL

22. MTU

23. Best effort

24. (L3) Router

25. Subnet mask

26. CIDR

27. Converge

28. Count-to-infinity
29. Line card

30. Network processor
31. Gateway

32. Private network

33
34
35

30.

37
38
39

40
41

42
43
L4

45.

. IPvo
. Multicast
. IGMP

SDN
. (Transport) port

. Pseudo header
. SYN/ACK

. Incarnation
. Flow

. SYN flood

. TCP Segment

. Window
Advertised Window

- Principle
1. Layering

' 2. Minimal States

\

3. Hierarchy

© N OO0~ WN =

Z
By

Z Encoding
. NRZI| Encoding
. Manchester Encoding

. 4B/5B Encoding
. Byte Stuffing

. Byte Counting
. Bit Stuffing

. 2-D Parity

. CRC

. MAC Learning

. Store-and-Forward
. Cut-through

. Spanning Tree

. CSMA/CD

. Stop-and-Wait

. Sliding Window

17.
18.
19.
20.
21.
22.
23.
24.
25.
20.
27 .
28.
29.
30.
31.
32.

Technique o | o

Fragmentation and Reassembly 33. Flow control |
Path MTU discovery i"
DHCP

Subnetting

Supernetting ,
Longest prefix match |
Distance vector routing (RIP)
Link state routing (OSPF) \
Boarder gateway protocol (BGP) ‘
Network address translation (NAT) |
User Datagram Protocol (UDP) N

i b

Transmission Control Protocol (TCP)
Three-way Handshake
TCP state transition
EWMA }

Sliding window

Summary

Today’s takeaways

#1: TCP employs the sliding window technique to achieve reliable data delivery
#2: TCP flow control ensures the sender never over-runs the receiver

Next lecture

- TCP congestion control (l)

28

