
Ming Liu
mgliu@cs.wisc.edu

Introduction to Computer Networks

CS640
https://pages.cs.wisc.edu/~mgliu/CS640/F22/

TCP Reliability Support

1

Today

2

Last lecture
• How to tear down the TCP connection?

Today
• How to ensure reliable data delivery?

Announcements
• Lab4 is due 12/02/2022, 11:59 PM

• Final exam: Dec 17, 2022 5:05 PM — 7:05 PM

Q: What is the goal of TCP reliability
mechanisms?

3

Q: What is the goal of TCP reliability
mechanisms?

A: Byte stream @sender = Byte stream @receiver

3

Q: What is the goal of TCP reliability
mechanisms?

A: Byte stream @sender = Byte stream @receiver
• #1: TCP segments are delivered with no loss/duplication

• #2: TCP segments are delivered in order

• #3: The sender is not over-running the receiver capability

3

Q: What is the goal of TCP reliability
mechanisms?

A: Byte stream @sender = Byte stream @receiver
• #1: TCP segments are delivered with no loss/duplication

• #2: TCP segments are delivered in order

• #3: The sender is not over-running the receiver capability

3

TCP Segment: The smallest data transmission unit under TCP, consisting
of a (segment) header and a data payload.

A TCP Send/Recv Example

Sending application Receiving application

TCP
Send buffer

TCP
Recv buffer

4

A TCP Send/Recv Example

Sending application Receiving application

TCP
Send buffer

TCP
Recv buffer

4

A TCP Send/Recv Example

Sending application Receiving application

TCP
Send buffer

TCP
Recv buffer

Send/Recv buffer is fixed sized
(i.e., MaxSendBuffer and MaxRcvBuffer)

4

#1: How to deal with segment loss/duplication?

Sending application Receiving application

TCP
Send buffer

TCP
Recv buffer

5

#1: How to deal with segment loss/duplication?

Sending application Receiving application

TCP
Send buffer

TCP
Recv buffer

5

L9

Acknowledgment

An acknowledgment (ACK) is a packet sent by one
host in response to a packet it has received

6

Acknowledgment

An acknowledgment (ACK) is a packet sent by one
host in response to a packet it has received
• Making a packet an ACK is simply a matter of changing a field in the transport header
• Data can be piggybacked in ACKs

6

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

Sender Receiver

Data (SequenceNum)

Acknowledgement

Timeout

A timeout is a signal to a packet that was sent but has
not received its ACK within a specified time frame
• The packet will be transmitted if a timeout is triggered

7

How are timers set?

Timeout Setup

RTT: the delay between transmission and receipt of
packets between hosts

RTT can be used to estimate the timeout period

8

EWMA for RTT Estimation

EWMA: exponentially weighted moving average

9

EWMA for RTT Estimation

EWMA: exponentially weighted moving average

#1: Measure SampleRTT for each packet/ACK pair

9

EWMA for RTT Estimation

EWMA: exponentially weighted moving average

#1: Measure SampleRTT for each packet/ACK pair

#2: Compute the weighted average of RTT
• EstimateRTT = alpha x EstimateRTT + beta x SampleRTT, where alpha+beta = 1

• 0.8 <= alpha <= 0.9

• 0.1 <= beta <= 0.2

9

EWMA for RTT Estimation

EWMA: exponentially weighted moving average

#1: Measure SampleRTT for each packet/ACK pair

#2: Compute the weighted average of RTT
• EstimateRTT = alpha x EstimateRTT + beta x SampleRTT, where alpha+beta = 1

• 0.8 <= alpha <= 0.9

• 0.1 <= beta <= 0.2

#3: Set timeout based on EstimateRTT
• TimeOut = 2 x EstimateRTT

9

Stop-and-Wait Revisited

Send the next packet only if the last one is
successfully delivered

10

Acknowledgment
• Where: receiver
• When: after a valid packet is being received

Timeout
• Where: sender
• When: after the issuing packet not being ACKed for a certain time

Stop-and-Wait Revisited

Send the next packet only if the last one is
successfully delivered

10

Acknowledgment
• Where: receiver
• When: after a valid packet is being received

Timeout
• Where: sender
• When: after the issuing packet not being ACKed for a certain time

Benefits:
• Sequence numbers help avoid duplicated packets
• No re-ordering: one outgoing packet at a time

• The receiver is not overwhelmed

Problem:
• How to keep the communication channel full?

Solution: Sliding Window

Allow multiple outstanding (un-ACKed) frames

11

Solution: Sliding Window

Allow multiple outstanding (un-ACKed) frames

11

The upper bound of un-ACKed frames is called a window

Buffering requirements on Sender and Receiver

#1: The sender needs to buffer data so that if data is
lost, it can be resent

#2: The receiver needs to buffer data so that if data is
received out of order, it can be held until all packets
are received

12

Sliding Window — Sender

Assign sequence number to each segment (SeqNum)

Maintain three state variables:
• Last byte written by the application (LastByteWritten)

• Last byte being acknowledged (LastByteAcked)

• Last byte sent (LastByteSent)

Sending application

TCP
Three variables manipulation:
• Advance LastByteWritten when an app writes
• Advance LastByteAcked when a consecutive ACK arrived

• Advance LastByteSent when the segments are sent
LastByteAcked

LastByteSent

LastByteWritten

13

Sliding Window Invariants @Sender

Sending application

TCP

LastByteAcked
LastByteSent

LastByteWritten

Invariants:
• LastByteSent <=LastByteWritten

• LastByteAcked <= LastByteSent

Buffered bytes:
• |LastByteWritten - LastByteAcked| <= MaxSendBuffer

14

Sliding Window — Receiver

Receiving application

TCP

NextByteExpected LastByteRcvd

LastByteRead

Maintain three state variables:
• Last byte read by the application (LastByteRead)

• Last byte received (LastByteRcvd)

• Next byte supposed to be received (NextByteExpected)

15

Three variables manipulation:
• Advance LastByteRead when an app reads
• Advance LastByteRcvd when the segment is received

• Advance NextByteExpected when the next expected segment is received

Sliding Window Invariants @Receiver

Receiving application

TCP

NextByteExpected LastByteRcvd

LastByteRead

Invariants:
• LastByteRead < NextByteExpected

• NextByteExpected <= LastByteRcvd + 1

Buffered bytes:
•|LastByteRcvd - LastByteRead| <= MaxRcvBuffer

16

#2: How to deal with the out-of-order delivery?

17

#2: How to deal with the out-of-order delivery?

Sliding Window @ Receiver
• If SeqNum of a segment is within the range [LastByteRead, LastByteRcvd] —> accept
• If SeqNum of a segment is less than LastByteRead —> discarded

• If a segment causes the required buffer data larger than MaxRcvBuffer —> discarded

• LastByteRcvd - LastByteRead > MaxRcvBuffer

Data is delivered only if there is a continuous byte
stream without gap

17

#3: How to not over-run the receiver?

Flow control
• Prevent server from overflowing the receiver’s buffer

@Receiver: LastByteRcvd - LastByteRead <= MaxRcvBuffer

18

Solution: the receiver advertises this window

LastByteRcvd - LastByteRead <= MaxRcvBuffer

Receiving application

TCP

NextByteExpected LastByteRcvd

LastByteRead

20

Solution: the receiver advertises this window

LastByteRcvd - LastByteRead <= MaxRcvBuffer

AdvertisedWindow = MaxRcvBuffer - (LastByteRcvd - LastByteRead)

Receiving application

TCP

NextByteExpected LastByteRcvd

LastByteRead

20

Solution: the receiver advertises this window

LastByteRcvd - LastByteRead <= MaxRcvBuffer

AdvertisedWindow = MaxRcvBuffer - ((NextByteExpected - 1) - LastByteRead)

Receiving application

TCP

NextByteExpected LastByteRcvd

LastByteRead

20

Flow Control: Sender Side

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

21

Sending side @TCP
• LastByteSent - LastByteAcked <= AdvertisedWindow

• EffectiveWindow = AdvertisedWindow - (LastByteSent - LastByteAcked)

Flow Control: The sender controls the rate

Sending application

TCP

LastByteAcked
LastByteSent

LastByteWritten

22

Flow Control: The sender controls the rate

Sending application

TCP

LastByteAcked
LastByteSent

LastByteWritten

Sending side @Application
• LastByteWritten - LastByteAcked <= MaxSendBuffer
• Block sender if (LastByteWritten - LastByteAcked) + y > MaxSendBuffer

23

Flow Control Discussion

The receiver
• Always send ACK in response to arriving data segment

The sender
• Persist sending one byte segment when AdvertiseWindow = 0

24

How TCP solves the first issue?

#1: Arbitrary communication
• Senders and receivers can talk to each other in any ways

#2: No reliability guarantee
• Packets can be lost/duplicated/reordered during transmission

• Checksum is not enough

#3: No resource management
• Each communication channel works as an exclusive network resource owner
• No adaptiveness support for the physical networks and applications

25

26

Terminology
1. Host

Principle

2. NIC
3. Multi-port I/O bridge

1. Layering

4. Protocol
5. RTT
6. Packet
7. Header
8. Payload
9. BDP

10. Baud rate
11. Frame/Framing
12. Parity bit
13. Checksum
14. Ethernet
15. MAC
16. (L2) Switch

17. Broadcast
2. Minimal States18. Acknowledgement

19. Timeout
20. Datagram
21. TTL
22. MTU
23. Best effort
24. (L3) Router

3. Hierarchy

25. Subnet mask
26. CIDR

29. Line card
30. Network processor

27. Converge
28. Count-to-infinity

31. Gateway
32. Private network

33. IPv6
34. Multicast
35. IGMP
36. SDN
37. (Transport) port
38. Pseudo header

40. Incarnation
39. SYN/ACK

41. Flow
42. SYN flood
43. TCP Segment
44. Window
45. Advertised Window

27

Technique
1. NRZ Encoding
2. NRZI Encoding
3. Manchester Encoding
4. 4B/5B Encoding
5. Byte Stuffing
6. Byte Counting
7. Bit Stuffing
8. 2-D Parity
9. CRC

10. MAC Learning
11. Store-and-Forward
12. Cut-through
13. Spanning Tree
14. CSMA/CD
15. Stop-and-Wait
16. Sliding Window

17. Fragmentation and Reassembly
18. Path MTU discovery
19. DHCP
20. Subnetting
21. Supernetting
22. Longest prefix match
23. Distance vector routing (RIP)
24. Link state routing (OSPF)
25. Boarder gateway protocol (BGP)
26. Network address translation (NAT)
27. User Datagram Protocol (UDP)
28. Transmission Control Protocol (TCP)
29. Three-way Handshake
30. TCP state transition
31. EWMA
32. Sliding window

33. Flow control

Summary

Today’s takeaways
#1: TCP employs the sliding window technique to achieve reliable data delivery
#2: TCP flow control ensures the sender never over-runs the receiver

Next lecture
• TCP congestion control (I)

28

