

CS 640 Introduction to Computer Networks Lab 4 Overview

Posted on Canvas Due: Tuesday Nov 30 2021 11:59PM

Course Instructor

Prof. Ming Liu (mgliu@cs.wisc.edu)

Teaching Assistant

Partho Sarthi (sarthi@wisc.edu) Hailey Johnson (hljohnson22@wisc.edu)

Office Hours: #3209 WF 1:00PM - 2:00PM or by appointment

Agenda

- 1. Objectives
- 2. Implementation
- 3. Grading Rubrics

Objectives

- 1. Contrast SDN applications and traditional network control planes
- 2. Create SDN applications that use proactive or reactive flow installation
 - 1. Layer-3 Routing Application
 - 2. Distributed Load Balancer Application

Implementation

- 1. Setup
 - 1. Install the required packages.
 - 2. Download, Install and Patch floodlight-plus package.
 - 3. Build and run FloodlightWithApps.jar with provided prop file as args.
 - 4. Start mininet for a specific topology
 - 5. Test the setup on a provided topology by pinging two hosts.
- 2. Code
 - 1. In Part 2 Modify L3Routing.java in `edu.wisc.cs.sdn.apps.l3routing`
 - 2. In Part 3 Modify LoadBalancer.java in 'edu.wisc.cs.sdn.apps.loadbalancer'
- 3. Test
 - 1. Use the provided topologies to test your implementation (See Rubric)
 - 2. Test L3 Routing after implementing Load Balancer
 - Due to some unknown issues in floodlight-plus, Hosts in L3 Routing do not get added without the Load Balancer.

Grading Rubrics (Layer 3 Routing)

SI No	Test case	Points	Торо
1	Flow entries for each host matches host's IP	3	single,3
2	Flow entries have correct timeout	3	single,3
3	Packets are forwarded between hosts on the same switch	3	single,3
4	Flow entries are sent to other switch to reach host on other switch	3	linear,2
5	Packets are forwarded between hosts on two different switches	3	linear,2
6	Packets are forwarded between hosts on many different switches	3	linear,5
7	Shortest-paths are computed correctly in a network with loops	3	someloops
8	Paths are recomputed when link goes down	3	someloops
9	Paths are recomputed when link comes up	3	someloops
10	Paths are recomputed correctly when link goes up and/or down	3	someloops
11	Shortest-paths are computed correctly in a mesh	3	mesh,5

Grading Rubrics (Load Balancing)

SI No	Test case	Points	Торо
12	Every switch has rules to send all other packets to next table	3	triangle
13	Every switch has rules to send TCP packets for virtual IP to controller	3	triangle
14	Every switch has rules to send ARP requests for virtual IP to controller	3	triangle
15	Pingall success for load balancer	3	triangle
16	Rules have idle timeout = 20s	3	single,6
17	SYN for virtual IP results in correct rule for packets from client	3	single,6
18	SYN for virtual IP results in correct rule for packets from server	3	single,6
19	Connections are round-robined between hosts to test load balancing	6	single,6

Keep the Rubric handy during implementation.

Thank You

Use Piazza or Office Hours for any doubts

CS 640 Introduction to Computer Networks