
Ming Liu

mgliu@cs.wisc.edu

Introduction to Computer Networks

CS640

https://pages.cs.wisc.edu/~mgliu/CS640/F22/

TCP Congestion

Control (I)

1

Today

2

Last lecture

• How to ensure reliable data delivery?

Today

• How to share networking bandwidth among concurrent TCP flows?

Announcements

• Lab4 is due 12/02/2022, 11:59 PM

• Final exam: Dec 17, 2022 5:05 PM — 7:05 PM

NIC 1 NIC 2

Host 1

Switch 1 Switch 2

Host 2

NIC 3
Host 3

P1
P2

P4

P3

3

P1 <—> P2
P3 <—> P4

Q: What is the goal of TCP congestion control?

4

Q: What is the goal of TCP congestion control?

4

A: Utilization and fairness
• Utilization: each networking hardware is fully utilized

• Fairness: each networking hardware is equally shared

Q: Why congestion control is hard?

5

Q: Why congestion control is hard?

5

A: Two challenges:
• #1: The available capacity of the underlying networking
fabric keeps varying

•#2: Traffic is unpredictable

Q: What is the key idea behind congestion
control?

6

Q: What is the key idea behind congestion
control?

6

A: Window/Rate adjustment algorithm
• #1: Reaction point (RP) or sender

• #2: Congestion point (CP) or switch/router

• #3: Notification point (NP) or receiver Issue implicit feedbacks}

} Adjust window/rate

Q: What is the key idea behind congestion
control?

6

A: Window/Rate adjustment algorithm
• #1: Reaction point (RP) or sender

• #2: Congestion point (CP) or switch/router

• #3: Notification point (NP) or receiver Issue implicit feedbacks}

}

Mechanism and Policy

Adjust window/rate

Q: How to adjust the window and issue implicit
feedbacks?

7

Q: How to adjust the window and issue implicit
feedbacks?

A: TCP Reno
• One of many congestion control algorithms

• Consists of three techniques

7

Technique #1: AIMD

8

Goal: adjust to changes in the available BW capacity

Technique #1: AIMD

Additive Increase/Multiplicative Decrease

• Additive increase CongestionWindow when the congestion goes down

• Multiplicative decrease CongestionWindow when the congestion goes up

8

Goal: adjust to changes in the available BW capacity

Technique #1: AIMD

Additive Increase/Multiplicative Decrease

• Additive increase CongestionWindow when the congestion goes down

• Multiplicative decrease CongestionWindow when the congestion goes up

8

Goal: adjust to changes in the available BW capacity

New state per flow: CongestionWindow

• Limits how much data source has in transit

MaxWin = MIN (Congestion Window, AdvertiseWindow)

EffWin = MaxWin - (LastByteSent - LastByteAcked)

Technique #1: AIMD

Additive Increase/Multiplicative Decrease

• Additive increase CongestionWindow when the congestion goes down

• Multiplicative decrease CongestionWindow when the congestion goes up

8

Goal: adjust to changes in the available BW capacity

New state per flow: CongestionWindow

• Limits how much data source has in transit

MaxWin = MIN (Congestion Window, AdvertiseWindow)

EffWin = MaxWin - (LastByteSent - LastByteAcked)

(1). How to determine if the congestion goes up?

(2). How to determine if the congestion goes down?

(3). How much congestion window do we manipulate quantitatively?

Congestion goes up

A timeout occurs

• Packet loss

• Transmission slow

9

Congestion goes down

A CongestionWindow’s data are successfully delivered

• Each packet sent out during the last round-trip time (RTT) has been ACKed

10

CongestionWindow Manipulation

11

Increment CongestionWindow by one segment per RTT

• Congestion goes down

• AI phase: linear increase

Divide CongestionWindow by two if a timeout occurs

• Congestion goes up

• MD phase: multiplicative decrease — fast!!

CongestionWindow Manipulation

11

Increment CongestionWindow by one segment per RTT

• Congestion goes down

• AI phase: linear increase

Divide CongestionWindow by two if a timeout occurs

• Congestion goes down

• MD phase: multiplicate decrease — fast!!

CongestionWindow Manipulation

11

Increment CongestionWindow by one segment per RTT

• Congestion goes down

• AI phase: linear increase

Divide CongestionWindow by two if a timeout occurs

• Congestion goes down

• MD phase: multiplicate decrease — fast!!

In practice, increment a little for each ACK

• Increment = MSS X (MSS / CongestionWindow)

• CongestionWindow += Increment

• MSS = max segment size

AIMD Simulation Result

Trace: sawtooth behavior

12

AIMD Discussion

Analysis of the Increase and Decrease Algorithms for
Congestion Avoidance in Computer Networks, 1989

• Efficiency

• Fairness

• Convergence

• Distributedness

13

Takeaway

A good congestion control mechanism should
converge to the optimal point. And AIMD can!

14

Technique #2: Slow Start

Goal: determine the available capacity in the first

15

Option #1: Additive increase

• One segment per RTT

• Too slow

Option #2: Send as many segments as the advertised window allows

• Don’t take the buffer space at routers into consideration

• No coordination with other flows

Technique #2: Slow Start

Goal: determine the available capacity in the first

15

Two steps:

• Step #1: being with CongestionWindow = 1 segment

• Step #2: double CongestionWindow each RTT

 => Increment by 1 segment for each ACK

Technique #2: Slow Start

Goal: determine the available capacity in the first

15

Two steps:

• Step #1: being with CongestionWindow = 1 segment

• Step #2: double CongestionWindow each RTT

 => Increment by 1 segment for each ACK

Technique #2: Slow Start

Goal: determine the available capacity in the first

15

Exponential increase to probe for available bandwidth

Two steps:

• Step #1: being with CongestionWindow = 1 segment

• Step #2: double CongestionWindow each RTT

 => Increment by 1 segment for each ACK

Slow Start Discussion

Used…

• A flow is just started

• When a connection goes dead waiting for timeout

A threshold (called CongestionThreshold) to decide
when the slow start ends

• Also indicates when to begin additive increase

16

CongestionThreshold and CongestionWindow

#1: CongestionThreshold is typically set to a very
large value on connection setup

#2: Set to CongestionWindow/2 on a time out

• So, CongestionThreshold goes through a multiplicative decrease for each packet loss

• Set CongestionWindow = 1

• CongestionThreshold and CongestionWindow always >= 1 MSS

17

#3: After the loss, when new data is ACKed, increase
CongestionWindow

• If CongestionWindow <= CongestionThreshold, slow start

• Otherwise, additive increase

Technique #3-1: Fast Retransmit

Problem:

• Coarse-grained TCP timeouts lead to long idle periods

18

Technique #3-1: Fast Retransmit

Problem:

• Coarse-grained TCP timeouts lead to long idle periods

Solution:

• Add a heuristic that triggers the retransmission of a dropped packet sooner than the

regular timeout mechanism

18

19

Duplicated ACK

RP or Sender:

• Receives duplicated ACKs

• Packets might be lost or delayed

NP or Receiver

• Resends the same acknowledgement when receiving the out-of-order segments

19

Duplicated ACK

RP or Sender:

• Receives duplicated ACKs

• Packets might be lost or delayed

NP or Receiver

• Resends the same acknowledgement when receiving the out-of-order segments

Fast retransmit: use 3 duplicate ACKs to trigger retransmission

19

Duplicated ACK

RP or Sender:

• Receives duplicated ACKs

• Packets might be lost or delayed

NP or Receiver

• Resends the same acknowledgement when receiving the out-of-order segments

Fast retransmit: use 3 duplicate ACKs to trigger retransmission

Fast Retransmit Simulation Results

Avoid some of the timeout losses

20

Technique #3-2: Fast Recovery

21

Problem:

• Slow start probing is unnecessary under duplicated ACKs

Solution:

• Adjust the CongestionWindow to half of the last successful CongestionWindow

22

Dissecting Packet Loss

1 2 3 4 5 6 7 8 9 10Good

22

Dissecting Packet Loss

1 2 3 4 5 6 7 8 9 10

Case 1

Good

1 2 3 4 5 6 7 8 9 10

22

Dissecting Packet Loss

1 2 3 4 5 6 7 8 9 10

Case 1

Good

1 2 3 4 5 6 7 8 9 10

Case 2 1 2 3 4 5 6 7 8 9 10

22

Dissecting Packet Loss

1 2 3 4 5 6 7 8 9 10

Case 1

Good

1 2 3 4 5 6 7 8 9 10

Case 2 1 2 3 4 5 6 7 8 9 10

Case 3 1 2 3 4 5 6 7 8 9 10

How TCP solves the first issue?

#1: Arbitrary communication

• Senders and receivers can talk to each other in any ways

#2: No reliability guarantee

• Packets can be lost/duplicated/reordered during transmission

• Checksum is not enough

#3: No resource management

• Each communication channel works as an exclusive network resource owner

• No adaptiveness support for the physical networks and applications

23

24

Terminology
1. Host
2. NIC
3. Multi-port I/O bridge
4. Protocol
5. RTT
6. Packet
7. Header
8. Payload
9. BDP

10. Baud rate
11. Frame/Framing
12. Parity bit
13. Checksum
14. Ethernet
15. MAC
16. (L2) Switch

17. Broadcast
18. Acknowledgement
19. Timeout
20. Datagram
21. TTL
22. MTU
23. Best effort
24. (L3) Router
25. Subnet mask
26. CIDR

29. Line card
30. Network processor

27. Converge
28. Count-to-infinity

31. Gateway
32. Private network

33. IPv6
34. Multicast
35. IGMP
36. SDN
37. (Transport) port
38. Pseudo header

40. Incarnation
39. SYN/ACK

41. Flow
42. SYN flood
43. TCP Segment
44. Window
45. Advertised Window

47. TCP Reno
48. Duplicated ACK

46. Effective Window

49. Congestion Window
50. Congestion Threshold

25

Principle
1. Layering
2. Minimal States
3. Hierarchy
4. Mechanism/policy separation

26

Technique
1. NRZ Encoding
2. NRZI Encoding
3. Manchester Encoding
4. 4B/5B Encoding
5. Byte Stuffing
6. Byte Counting
7. Bit Stuffing
8. 2-D Parity
9. CRC

10. MAC Learning
11. Store-and-Forward
12. Cut-through
13. Spanning Tree
14. CSMA/CD
15. Stop-and-Wait
16. Sliding Window

17. Fragmentation and Reassembly
18. Path MTU discovery
19. DHCP
20. Subnetting
21. Supernetting
22. Longest prefix match
23. Distance vector routing (RIP)
24. Link state routing (OSPF)
25. Boarder gateway protocol (BGP)
26. Network address translation (NAT)
27. User Datagram Protocol (UDP)
28. Transmission Control Protocol (TCP)
29. Three-way Handshake
30. TCP state transition
31. EWMA
32. Sliding window

33. Flow control
34. AIMD
35. Slow start
36. Fast retransmit
37. Fast recovery

Summary

Today’s takeaways

#1: TCP congestion control limits the number of outstanding bytes in the network

#2: TCP Reno consists of three techniques: AIMD, slow start, fast retransmit/recovery

Next lecture

• TCP congestion control (II)

27

