TCP Congestion
Control (l1)

Ming Liu
mgliu@cs.wisc.edu

Today

Last lecture

- How to share networking bandwidth among concurrent TCP flows?

Today

- How to improve the efficiency of TCP congestion control?

Announcements

- Lab4 Is due 12/02/2022, 11:59 PM
- Labs is due 12/14/2022, 11:59 PM
» Final exam: Dec 17, 2022 5:05 PM - 7:05 PM

How TCP solves the first issue?

#1: Arbitrary communication

- Senders and receivers can talk to each other in any ways

#2: No reliability guarantee

- Packets can be lost/duplicated/reordered during transmission
« Checksum is not enough

#3: No resource management

« Each communication channel works as an exclusive network resource owner
- No adaptiveness support for the physical networks and applications

Q: What techniques does TCP Reno introduce?

A: Three techniques:

* #1: AIMD
 #2: Slow start
» #3: Fast retransmit and recovery

Issue #1: Silly Window Syndrome
(MssT [IMSST Data

AcKs [IMSST| [TMSST

Issue #1: Silly Window Syndrome
(MssT [IMSST Data

AcKs [IMSST| [TMSST

Issue #1: Silly Window Syndrome

MSS MSS Data
—>
——————————————————————————

ACKs MSS MSS

| PrOblem:
« Wait too long, hurt latency
 Wait too short, hurt bandwidth

Solution: Nagle’s Algorithm

A self-clocking solution

- As long as TCP has any data in flight, the sender will eventually receive an ACK
- TCP_NODELAY option

—_—— e ——— — e e ——————— — __ m—

\ When the application produces data to send
if both the available data and the window > MSS
send a full segment

else
if there is unACKed data in flight |
)

buffer the new data until an ACK arrives
else
send all the new data now |

i\
|
|
|
|
|

Issue #2: Timeout Setup during Retransmission

Sender Receiver Sender Receiver

SampleR TT
SampleR T1

Two degenerate cases

« Do not sample RTT when retransmitting

Solution: Karn/Partridge Algorithm for RTO

Sender Receiver Sender Receiver

SampleR TT
SampleR T1

After each retransmission, set the next RTO to be

double the value of the last

- Exponentially backoff is a well-known control theory method
- Loss is most likely caused by congestion so be careful

Issue #3: Retransmitted Segments

What segments are retransmitted under a timeout?

 Option #1: retransmit all segments subsequently after the missing one (pessimistic)
- Option #2: retransmit just the missing one (optimistic)

Issue #3: Retransmitted Segments

What segments are retransmitted under a timeout?

 Option #1: retransmit all segments subsequently after the missing one (pessimistic)
- Option #2: retransmit just the missing one (optimistic)
- Option #3: selective acknowledgment

 The receiver uses optional fields to acknowledge the missing ones

- SACK option

Issue #3: Retransmitted Segments

What segments are retransmitted under a timeout?

 Option #1: retransmit all segments subsequently after the missing one (pessimistic)
- Option #2: retransmit just the missing one (optimistic)
- Option #3: selective acknowledgment

 The receiver uses optional fields to acknowledge the missing ones

- SACK option

e ——

Solution: TCP SACK

Selective Acknowledgements (SACK)

 #1: Same congestion control mechanisms as TCP RENO
- Uses TCP options fields
- Timeouts are still used

- #2: When out-of-order data arrives, tell the sender which segments have been received
- Enables the sender to maintain an image of the receiver's queue

 #3: Sender then resends all missing segments without waiting to timeout
« Doesn’t send beyond CWND
- When no old data needs to be resent, then send new data

10

Issue #4: TCP Reno is not the only approach

TCP Vegas: source watches for some sign that router’s

queue is building up and congestion will happen

- RTT grows
- Sending rate flattens

11

Solution: Host-centric Congestion Avoidance

#1: Vegas tries to control the sending rate to avoid
buffers to be filled

#2: Let BaseRTT be the minimal of all measured RTTs

#3: If not overflowing the connection, then
- ExpectedRate = CongestionWindow/BaseRTT

#4: Source calculates sending rate (ActualRate) per

RTT
- Pick one packet per RTT, timestamp send/ACK packet pair, and divide by the number

of bytes in transit
12

Vegas Algorithm

Source compares ActualRate with ExpectRate

- Diff = ExpectedRate - ActualRate
- |f Diff < alpha
- Increase CongestionWindow linearly
- Else if Diff > beta
- Decrease CongestionWindow linearly
- Else
- Leave CongestionWindow unchanged

13

Vegas Results

Trace
- alpha = 30KBps, beta = 60KBps

|
|

| 70 = T e FEEEEEEEEEEEEEEEEEEEEEE W0 CEEEEE TOEUE DR FOUERE CECEED COPREE FREERE FELERE FOUTEE FOUERE CEDUPRRUTRETEEREEE FOPREDPREERE PRFRRROUUCOOOCCE RORPRRRE DU OO AU TUECEEERERECEUTOEREE FRPUEE TRPRIOEECennnnne COEREREREE TOUOEE hee
| 60 -
I 50 -
. ¥
20 -
10 |

| ! | | | | | I | | | | | | | 1

05 1.0 15 20 25 30 35 40 45 50 55 6.0 65 70 7.5 8.0
Time (seconds)

240 -
200 -
160 A
120 A
80 -
40 A

KBps

05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 8.0

Time (seconds)

Vegas Results

Trace
- alpha = 30KBps, beta = 60KBps

. a0 40_

05 1.0 15 20 25 30 35 40 45 50 55 6.0 65 7.0 75 8.0 \
Time (seconds)

2481 |‘
P _ 20 N - A - L —_—
|

Linear decrease in Vegas does not violate AIMD since it happens |
before packet loss)

14

Terminology -

1. Host 1/. Broadcast 33. IPv6 49. Congestion Window
2. NIC 18. Acknowledgement 34. Multicast 50. Congestion Threshold |
3. Multi-port 1/0 bridge 19. Timeout 35. IGMP 51. Selective \
| 4. Protocol 20. Datagram 36. SDN Acknowledgment
| 5.RTT 21. TTL 37. (Transport) port I
6. Packet 22. MTU 38. Pseudo header
7. Header 23. Best effort 39. SYN/ACK ‘
| 8. Payload 24. (L3) Router 40. Incarnation |
9. BDP 25. Subnet mask 41. Flow \
10. Baud rate 26. CIDR 42. SYN flood 1
11. Frame/Framing 27. Gonverge 43. TGP Segment ‘
12. Parity bit 28. Count-to-infinity 44. Window |
13. Checksum 29. Line card 45. Advertised Window
14. Ethernet 30. Network processor 46. Effective Window
15. MAC 31. Gateway 47. TCP Reno]

16. (L2) Switch

32. Private network 48. Duplicated ACK '

B S

| Principle

1. Layering

2. Minimal States

3. Hierarchy v
4. Mechanism/policy separation ‘

© N OO0~ WN =

Z
By

Z Encoding
. NRZI| Encoding
. Manchester Encoding

. 4B/5B Encoding
. Byte Stuffing

. Byte Counting
. Bit Stuffing

. 2-D Parity

. CRC

. MAC Learning

. Store-and-Forward
. Cut-through

. Spanning Tree

. CSMA/CD

. Stop-and-Wait

. Sliding Window

17.
18.
19.
20.
21.
22.
23.
24.
25.
20.
27 .
28.
29.
30.
31.
32.

Technique

Fragmentation and Reassembly
Path MTU discovery

DHCP

Subnetting

Supernetting

Longest prefix match

IP)

i b

Distance vector routing (K
Link state routing (OSPF)
Boarder gateway protocol (BGP)
Network address translation (NAT)
User Datagram Protocol (UDP)
Transmission Control Protocol (TCP)
Three-way Handshake

TCP state transition

EWMA

Sliding window

33
34
35
36
37
38
39
40

. Flow control

. AIMD

. Slow start

. Fast retransmit

. Fast recovery

. Nagle’s algorithm

. Karn/Partridge algorithm
. TCP Vegas

17

Summary

Today’s takeaways

#1: Nagle’s algorithm improves the TCP efficiency by coalescing small segments

#2: The timeout threshold should be carefully configured when retransmission happens
congestion control limits the number of outstanding bytes in the network

#3: Selective transmission improves the retransmission efficiency by deciding the specific
missing segments

#4: TCP Vegas controls sending rate by ensuring no buffer overflow at the router

Next lecture
« TCP In-network Support

18

