
Ming Liu

mgliu@cs.wisc.edu

Introduction to Computer Networks

CS640

https://pages.cs.wisc.edu/~mgliu/CS640/F22/

TCP Congestion

Control (II)

1

Today

2

Last lecture

• How to share networking bandwidth among concurrent TCP flows?

Today

• How to improve the efficiency of TCP congestion control?

Announcements

• Lab4 is due 12/02/2022, 11:59 PM

• Lab5 is due 12/14/2022, 11:59 PM

• Final exam: Dec 17, 2022 5:05 PM — 7:05 PM

How TCP solves the first issue?

#1: Arbitrary communication

• Senders and receivers can talk to each other in any ways

#2: No reliability guarantee

• Packets can be lost/duplicated/reordered during transmission

• Checksum is not enough

#3: No resource management

• Each communication channel works as an exclusive network resource owner

• No adaptiveness support for the physical networks and applications

3

Q: What techniques does TCP Reno introduce?

A: Three techniques:
• #1: AIMD

• #2: Slow start

• #3: Fast retransmit and recovery

4

Issue #1: Silly Window Syndrome

Sender Receiver

MSS MSS

MSS MSS

Data

ACKs

5

Issue #1: Silly Window Syndrome

Sender Receiver

Sender Receiver

MSS MSS

MSS MSS

Data

ACKs

<MSS MSS

MSS <MSS

Data

ACKs

5

Issue #1: Silly Window Syndrome

Sender Receiver

Sender Receiver

MSS MSS

MSS MSS

Data

ACKs

<MSS MSS

MSS <MSS

Data

ACKs

 Problem:

• Wait too long, hurt latency

• Wait too short, hurt bandwidth

5

Solution: Nagle’s Algorithm

A self-clocking solution

• As long as TCP has any data in flight, the sender will eventually receive an ACK

• TCP_NODELAY option

6

Issue #2: Timeout Setup during Retransmission

Two degenerate cases

• Do not sample RTT when retransmitting

7

Solution: Karn/Partridge Algorithm for RTO

After each retransmission, set the next RTO to be
double the value of the last

• Exponentially backoff is a well-known control theory method

• Loss is most likely caused by congestion so be careful
8

Issue #3: Retransmitted Segments

What segments are retransmitted under a timeout?

• Option #1: retransmit all segments subsequently after the missing one (pessimistic)

• Option #2: retransmit just the missing one (optimistic)

9

Issue #3: Retransmitted Segments

What segments are retransmitted under a timeout?

• Option #1: retransmit all segments subsequently after the missing one (pessimistic)

• Option #2: retransmit just the missing one (optimistic)

• Option #3: selective acknowledgment

• The receiver uses optional fields to acknowledge the missing ones

• SACK option

9

Issue #3: Retransmitted Segments

What segments are retransmitted under a timeout?

• Option #1: retransmit all segments subsequently after the missing one (pessimistic)

• Option #2: retransmit just the missing one (optimistic)

• Option #3: selective acknowledgment

• The receiver uses optional fields to acknowledge the missing ones

• SACK option

9

Tell the sender what segments have been arrived

Solution: TCP SACK

Selective Acknowledgements (SACK)

• #1: Same congestion control mechanisms as TCP RENO

• Uses TCP options fields

• Timeouts are still used

• #2: When out-of-order data arrives, tell the sender which segments have been received

• Enables the sender to maintain an image of the receiver’s queue

• #3: Sender then resends all missing segments without waiting to timeout

• Doesn’t send beyond CWND

• When no old data needs to be resent, then send new data

10

Issue #4: TCP Reno is not the only approach

TCP Vegas: source watches for some sign that router’s
queue is building up and congestion will happen

• RTT grows

• Sending rate flattens

11

Solution: Host-centric Congestion Avoidance

#3: If not overflowing the connection, then

• ExpectedRate = CongestionWindow/BaseRTT

#1: Vegas tries to control the sending rate to avoid
buffers to be filled

#2: Let BaseRTT be the minimal of all measured RTTs

#4: Source calculates sending rate (ActualRate) per
RTT

• Pick one packet per RTT, timestamp send/ACK packet pair, and divide by the number
of bytes in transit

12

Vegas Algorithm

Source compares ActualRate with ExpectRate

• Diff = ExpectedRate - ActualRate

• If Diff < alpha

• Increase CongestionWindow linearly

• Else if Diff > beta

• Decrease CongestionWindow linearly

• Else

• Leave CongestionWindow unchanged

13

Vegas Results

Trace

• alpha = 30KBps, beta = 60KBps

14

Vegas Results

Trace

• alpha = 30KBps, beta = 60KBps

Linear decrease in Vegas does not violate AIMD since it happens
before packet loss

14

15

Terminology
1. Host
2. NIC
3. Multi-port I/O bridge
4. Protocol
5. RTT
6. Packet
7. Header
8. Payload
9. BDP

10. Baud rate
11. Frame/Framing
12. Parity bit
13. Checksum
14. Ethernet
15. MAC
16. (L2) Switch

17. Broadcast
18. Acknowledgement
19. Timeout
20. Datagram
21. TTL
22. MTU
23. Best effort
24. (L3) Router
25. Subnet mask
26. CIDR

29. Line card
30. Network processor

27. Converge
28. Count-to-infinity

31. Gateway
32. Private network

33. IPv6
34. Multicast
35. IGMP
36. SDN
37. (Transport) port
38. Pseudo header

40. Incarnation
39. SYN/ACK

41. Flow
42. SYN flood
43. TCP Segment
44. Window
45. Advertised Window

47. TCP Reno
48. Duplicated ACK

46. Effective Window

49. Congestion Window
50. Congestion Threshold
51. Selective

Acknowledgment

16

Principle
1. Layering
2. Minimal States
3. Hierarchy
4. Mechanism/policy separation

17

Technique
1. NRZ Encoding
2. NRZI Encoding
3. Manchester Encoding
4. 4B/5B Encoding
5. Byte Stuffing
6. Byte Counting
7. Bit Stuffing
8. 2-D Parity
9. CRC

10. MAC Learning
11. Store-and-Forward
12. Cut-through
13. Spanning Tree
14. CSMA/CD
15. Stop-and-Wait
16. Sliding Window

17. Fragmentation and Reassembly
18. Path MTU discovery
19. DHCP
20. Subnetting
21. Supernetting
22. Longest prefix match
23. Distance vector routing (RIP)
24. Link state routing (OSPF)
25. Boarder gateway protocol (BGP)
26. Network address translation (NAT)
27. User Datagram Protocol (UDP)
28. Transmission Control Protocol (TCP)
29. Three-way Handshake
30. TCP state transition
31. EWMA
32. Sliding window

33. Flow control
34. AIMD
35. Slow start
36. Fast retransmit
37. Fast recovery
38. Nagle’s algorithm
39. Karn/Partridge algorithm
40. TCP Vegas

Summary

Today’s takeaways

#1: Nagle’s algorithm improves the TCP efficiency by coalescing small segments

#2: The timeout threshold should be carefully configured when retransmission happens

congestion control limits the number of outstanding bytes in the network

#3: Selective transmission improves the retransmission efficiency by deciding the specific
missing segments

#4: TCP Vegas controls sending rate by ensuring no buffer overflow at the router

Next lecture

• TCP In-network Support

18

