Introduction to Computer Networks

Encoding

https://pages.cs.wisc.edu/~mgliu/CS640/F22/

Ming Liu mgliu@cs.wisc.edu

Today

Last lecture

• How fast is the network?

Today

How to transmit bits reliably across the link?

Announcements

- No office hour today
- Office hour this week: Tomorrow 1:30pm 2:30pm

2

Q: How to transmit bits reliably across the link?

Q: How to transmit bits reliably across the link?

Q1: How to represent bits on the link? Q2: How to propagate bits across the link reliably?

Q1: How to represent bits on the link?

4

Q1: How to represent bits on the link?

A: Two discrete signals based on the communication media represent low and high.

4

Q2: How to propagate bits across the link reliably?

Q2: How to propagate bits across the link reliably?

Invariant: Bits (send) = Bits (receive)

Q2: How to propagate bits across the link reliably?

A: Non-Return to Zero (NRZ) scheme

Non-Return to Zero (NRZ)

Two issues:

- Baseline wander
- Clock synchronization

Terminology

- 1. Host
- 2. NIC
- 3. Multi-port I/O bridge
- 4. Protocol
- 5. RTT
- 6. Packet
- 7. Header
- 8. Payload
- 9. BDP

_					
				Pr	
	1.	Lay	erir	ŋ	

Technique

1. NRZ Encoding

Summary

Today's takeaways

#1: Bit representation#2: NRZ encoding

Next lecture

- Better encoding
- Physical layer

