Introduction to Computer Networks

Spanning Tree and Ethernet

https://pages.cs.wisc.edu/~mgliu/CS640/F22/

Ming Liu mgliu@cs.wisc.edu

Today

Last lecture

How do frames traverse NICs/bridges?

Today

- How to avoid loops in the L2 switching?
- Why Ethernet dominates?

Announcements

- Lab2 due next Tuesday
- Quiz2 this Thursday

Q: How to avoid loops in the L2 switching?

Q: How to avoid loops in the L2 switching?

A: Spanning Tree Radia Perlman from the Digital Equipment Corporation

- IEEE 802.1 specification

Q1: How does the spanning tree algorithm work?

Q1: How does the spanning tree algorithm work?

A: Each switch chooses the ports to forward frames such that one reduces a topology graph to a tree. Three steps on a switch:

Q1: How does the spanning tree algorithm work?

A: Each switch chooses the ports to forward frames such that one reduces a topology graph to a tree. Three steps on a switch:

- #1: Select a root -> Use the switch ID
- #2: Decide the shortest path to the root -> Use the switch ID to break the tie
- #3: Configure the designated ports (and associated) switches) for forwarding -> No blindly broadcast anymore

Q2: How does the spanning tree protocol work?

Networking Protocol

An abstract object or module in a layered structure

Vertical view: an interface to high-level protocols
Horizontal view: a peer interface to a counterpart

Networking Protocol Distributed logic that runs over one or more communication entities for certain functionalities

- #1: What states are maintained at each entity?
- #2: How do different entities coordinate?

Networking Protocol Distributed logic that runs over one or more communication entities for certain functionalities

- #1: What states are maintained at each entity?
- #2: How do different entities coordinate?

Key principle: minimal states

Anytime and anywhere connectivity -> highly scalable systems

Q2-1: What states are maintained at each entity?

Q2-1: What states are maintained at each entity?

A: A switch maintains the following per-switch/ per-port states:

- #1: Local switch ID
- #2: The switch ID of the root
- #4: Per-port action table

• #3: The distance (i.e., the number of hops) to the root

Q2-2: How do different entities coordinate?

Q2-2: How do different entities coordinate?

A: The configuration message, (Y, d, X) Y: the root switch ID in my view d: the distance to the root (i.e, the number of hops)

- X: my local switch ID

Spanning Tree Discussion

The resulting effect is blocking a port from forwarding

A graph -> a tree

The protocol runs periodically

- When a switch recovers from a failure, it starts from the scratch
- The states of a switch are updated when the tree structure changes

it starts from the scratch en the tree structure changes

Q: Why Ethernet dominates?

Q1: How to identify a frame from bit streams? => Framing Q2: How to handle transmission errors? => Error handling Q3: How do frames traverse NICs/bridges? => L2 switching Q4: How to coordinate the NIC on two sides? -> Flow control

Q5: How to orchestrate concurrent transmissions? => Access control

Q: Why Ethernet dominates?

Q: Why Ethernet dominates? A: Easy-to-manage, • #1: No central coordination

- #1: No central coordination
- #2: Coaxial cable, tap, and adapter

Q: Why Ethernet dominates?

A: Easy-to-manage, cheap, simple multiplexing #1: No central coordination

- #2: Coaxial cable, tap, and adapter
- (CSMA/CD)

#3: Carrier Sense, Multiple Access with Collision Detection

Ethernet Hardware in the Early Days

An Ethernet segment could support 500m originally

Network repeater

• No more than four repeaters could be positioned between two hosts ==> up to 2500m

Network Hub

Key Idea: Access the Channel Randomly

state of the communication carrier

Idle or busy

#2: Multiple Access (MA) — the transmitter is allowed to send the frame with a probability p

- No coordination
- result of CS

#1: Carrier Sense (CS) — the transmitter senses the

• The transmitter makes the decision at the beginning of each time slot based on the

Key Idea: Access the Channel Randomly

#3: Collision Detection (CD) — When a collision

exponential back-off, and sends the frame again

- Postpone the transmission by an internal T
- The length of the interval T increases with every collision, i.e., T = 2^(i 1) * X, where i is the number of retries
- X was configured as 51.2US originally, given the maximum 2500 Ethernet

- happens, the transmitter aborts immediately, performs

Ethernet Discussion

CSMA/CD is mainly implemented at the sender

CSMA/CD enabled Ethernet segments are replaced by the switch-based Ethernet

- #1: Incremental deployment
- #2: Switching fabric cost drops significantly

CSMA/CD like mechanisms have been applied in the wireless network

Terminology

- 1. Host
- 2. NIC
- 3. Multi-port I/O bridge
- 4. Protocol
- 5. RTT
- 6. Packet
- 7. Header
- 8. Payload
- 9. BDP
- 10. Baud rate
- 11. Frame/Framing
- 12. Parity bit
- 13. Checksum
- 14. Ethernet
- 15. MAC
- 16. (L2) Switch

17. Broadcast

Layering
 Minimal States

Principle

Technique

- 1. NRZ Encoding
- 2. NRZI Encoding
- 3. Manchester Encoding
- 4.4B/5B Encoding
- 5. Byte Stuffing
- 6. Byte Counting
- 7. Bit Stuffing
- 8. 2-D Parity
- 9. CRC
- 10. MAC Learning
- 11. Store-and-Forward
- 12. Cut-through
- 13. Spanning Tree
- 14. CSMA/CD

Summary

Today's takeaways

forwarding ports

well as the manageability and cost benefits

Next lecture

L2 flow control

- #1: The spanning tree protocol reduces a topology graph to a tree by blocking certain
- #2: Ethernet becomes popular due to the simple multiplexing support (i.e., CSMA/CD) as