
Ming Liu
mgliu@cs.wisc.edu

Introduction to Computer Networks

CS640
https://pages.cs.wisc.edu/~mgliu/CS640/S25/index.html

Distance Vector Routing

1

https://pages.cs.wisc.edu/~mgliu/CS640/S25/index.html

Outline

2

• Today
• Distance Vector Routing

• Announcements
• Lab2 due on 03/04/2025 12:01PM
• Quiz2 in-class next Thursday (03/06/2025)

• Last
• Efficient Addressing

Recap: Forwarding v.s. Routing

3

• Forwarding refers to the router-local action of transferring a
packet from an input interface to the appropriate output interface

• Usually implemented in the hardware
• O(nanosecond)
• Data plane

Recap: Forwarding v.s. Routing

4

• Routing refers to the network-wide process that determines the
end-to-end paths that packets take from source to destination

• Usually implemented in the software (and hardware)
• O(second)
• Control plane

Recap: Forwarding v.s. Routing

4

• Routing refers to the network-wide process that determines the
end-to-end paths that packets take from source to destination

• Usually implemented in the software (and hardware)
• O(second)
• Control plane

Our Focus Today

5

Routing Logics

5

Routing Logics

5

Routing Logics

Lookup Routing Table

5

Routing Logics

Compute Subnet Number

5

Routing Logics

A matched entry is found

5

Routing Logics

Hosts connects to the router directly

5

Routing Logics

Send to the next router

6

How can we build the routing table?

Routing Algorithm/Protocol

7

• Represent connected networks as a graph
• Vertices in the graph are routers
• Edges in the graph links

• Links (Edges) have communication cost, which can be quantized
• E.g., physical distance, latency, throughput, etc.

8

Routing Challenges

• #1: Network hardware fabric is dynamic
• Links and routers can fail

• #2: Network traffic is dynamic
• A router or link can be overloaded

• #3: The communication cost is dynamic
• The quantized value depends on both physical and runtime properties

• #4: There is no central view
• Protocols must work in a distributed fashion

Naive Approach

• Static configuration
• Calculate preferred paths mannually
• Fill them into the routing table

9

• Drawbacks
• No adaptation
• Unable to scale

10

Distance Vector Routing

• Key idea:
• Each router constructs a one-dimensional array (vector) that contains the
“distance” (cost) to all other nodes

• Distributes that vector to its immediate neighbors

• Assumption
• Each router knows the cost of the link to its directly connected neghbors

A

F

E

G

B
C

D

 Distance is defined as the number of hops

Distance Vector Protocol

11

A

F

E

G

B
C

D

Distance to Reach Node (Global View)

A B C D E F G
A
B
C
D
E
F
G

12

Step 1: Figure Out Initial Distance

A

F

E

G

B
C

D

Distance to Reach Node (Global View)

A B C D E F G
A 0 1 1 ∞ 1 1 ∞
B
C
D
E
F
G

12

Step 1: Figure Out Initial Distance

A

F

E

G

B
C

D

Distance to Reach Node (Global View)

A B C D E F G
A 0 1 1 ∞ 1 1 ∞
B 1 0 1 ∞ ∞ ∞ ∞
C
D
E
F
G

12

Step 1: Figure Out Initial Distance

A

F

E

G

B
C

D

Distance to Reach Node (Global View)

A B C D E F G
A 0 1 1 ∞ 1 1 ∞
B 1 0 1 ∞ ∞ ∞ ∞
C 1 1 0 1 ∞ ∞ ∞
D
E
F
G

12

Step 1: Figure Out Initial Distance

A

F

E

G

B
C

D

Distance to Reach Node (Global View)

A B C D E F G
A 0 1 1 ∞ 1 1 ∞
B 1 0 1 ∞ ∞ ∞ ∞
C 1 1 0 1 ∞ ∞ ∞
D ∞ ∞ 1 0 ∞ ∞ 1

E 1 ∞ ∞ ∞ 0 ∞ ∞
F 1 ∞ ∞ ∞ ∞ 0 1

G ∞ ∞ ∞ 1 ∞ 1 0
12

Step 1: Figure Out Initial Distance

A

F

E

G

B
C

D

Destination Cost NextHop
B 1 B
C 1 C
D ∞ —

E 1 E
F 1 F
G ∞ —

Initial Routing Table

13

A

F

E

G

B
C

D

Destination Cost NextHop
A 1 A
C 1 C
D ∞ —

E ∞ —

F ∞ —

G ∞ —
13

Initial Routing Table

A

F

E

G

B
C

D

Destination Cost NextHop
A 1 A
B 1 B
D 1 D
E ∞ —

F ∞ —

G ∞ —
13

Initial Routing Table

A

F

E

G

B
C

D

Destination Cost NextHop
A 1 A
B ∞ —

C ∞ —

D ∞ —

F ∞ —

G ∞ —
13

Initial Routing Table

A

F

E

G

B
C

D

Destination Cost NextHop
A 1 A
B ∞ —

C ∞ —

D ∞ —

E ∞ —

G 1 G
13

Initial Routing Table

A

F

E

G

B
C

D

Dest. Cost NextHop
B 1 B
C 1 C
D ∞ —

E 1 E
F 1 F
G ∞ —

Dest. Cost NextHop
B
C
D
E
F
G

A

+

B

=

A
Dest. Cost NextHop
A 1 A
C 1 C
D ∞ —

E ∞ —

F ∞ —

G ∞ —

t0

14

Step 2: Exchange the Distance Vector

Dest. Cost NextHop
B 1 B
C 1 C
D ∞ —

E 1 E
F 1 F
G ∞ —

Dest. Cost NextHop
B 1 B
C
D
E
F
G

A

+

B

=

A
Dest. Cost NextHop
A 1 A
C 1 C
D ∞ —

E ∞ —

F ∞ —

G ∞ —

A

F

E

G

B
C

D
t0

14

Step 2: Exchange the Distance Vector

Dest. Cost NextHop
B 1 B
C 1 C
D ∞ —

E 1 E
F 1 F
G ∞ —

Dest. Cost NextHop
B 1 B
C 1 C
D ∞ —

E 1 E
F 1 F
G ∞ —

A

+

B

=

A
Dest. Cost NextHop
A 1 A
C 1 C
D ∞ —

E ∞ —

F ∞ —

G ∞ —

A

F

E

G

B
C

D
t0

14

Step 2: Exchange the Distance Vector

Dest. Cost NextHop
B 1 B
C 1 C
D ∞ —

E 1 E
F 1 F
G ∞ —

Dest. Cost NextHop
B
C
D
E
F
G

A

+

C

=

A
Dest. Cost NextHop
A 1 A
B 1 B
D 1 D
E ∞ —

F ∞ —

G ∞ —

A

F

E

G

B
C

D
t0 t1

15

Step 3+: Keep Exchange Vectors Until Stable

Dest. Cost NextHop
B 1 B
C 1 C
D ∞ —

E 1 E
F 1 F
G ∞ —

Dest. Cost NextHop
B 1 B
C 1 C
D 2 C
E 1 E
F 1 F
G ∞ —

A

+

C

=

A
Dest. Cost NextHop
A 1 A
B 1 B
D 1 D
E ∞ —

F ∞ —

G ∞ —

A

F

E

G

B
C

D
t0 t1

15

Step 3+: Keep Exchange Vectors Until Stable

Dest. Cost NextHop
B 1 B
C 1 C
D 2 C
E 1 E
F 1 F
G ∞ —

Dest. Cost NextHop
B
C
D
E
F
G

A

+

E

=

A
Dest. Cost NextHop
A 1 A
B ∞ —

C ∞ —

D ∞ —

F ∞ —

G ∞ —

A

F

E

G

B
C

D
t0 t1 t2

15

Step 3+: Keep Exchange Vectors Until Stable

Dest. Cost NextHop
B 1 B
C 1 C
D 2 C
E 1 E
F 1 F
G ∞ —

Dest. Cost NextHop
B 1 B
C 1 C
D 2 C
E 1 E
F 1 F
G ∞ —

A

+

E

=

A
Dest. Cost NextHop
A 1 A
B ∞ —

C ∞ —

D ∞ —

F ∞ —

G ∞ —

A

F

E

G

B
C

D
t0 t1 t2

15

Step 3+: Keep Exchange Vectors Until Stable

Dest. Cost NextHop
B 1 B
C 1 C
D 2 C
E 1 E
F 1 F
G ∞ —

Dest. Cost NextHop
B
C
D
E
F
G

A

+

F

=

A
Dest. Cost NextHop
A 1 A
B ∞ —

C ∞ —

D ∞ —

F 0 F
G 1 G

A

F

E

G

B
C

D
t0 t1 t2 t3

15

Step 3+: Keep Exchange Vectors Until Stable

Dest. Cost NextHop
B 1 B
C 1 C
D 2 C
E 1 E
F 1 F
G ∞ —

Dest. Cost NextHop
B 1 B
C 1 C
D 2 C
E 1 E
F 1 F
G 2 F

A

+

F

=

A
Dest. Cost NextHop
A 1 A
B ∞ —

C ∞ —

D ∞ —

F 0 F
G 1 G

A

F

E

G

B
C

D
t0 t1 t2 t3

15

Step 3+: Keep Exchange Vectors Until Stable

Dest. Cost NextHop
B 1 B
C 1 C
D 2 C
E 1 E
F 1 F
G ∞ —

Dest. Cost NextHop
B 1 B
C 1 C
D 2 C
E 1 E
F 1 F
G 2 F

A

+

F

=

A
Dest. Cost NextHop
A 1 A
B ∞ —

C ∞ —

D ∞ —

F 0 F
G 1 G

A

F

E

G

B
C

D
t0 t1 t2 t3

• New_Cost (node) = Cost(node) (from neighbor) + Cost (node-neighbor)
• Cost (node-neighbor) = 1 in the above discussion

• If next_hop (new) == next_hop (old)

• Cost = New_Cost
• Else

• Cost = Min (New_Cost, Old_Cost)
• Update the next hop to the neighbor node

• The routing table is evolving

• Based on the event sequence

16

Route Selection

Dest. Cost NextHop
A 1 A
B ∞ —

C ∞ —

D ∞ —

F ∞ —

G ∞ —

Dest. Cost NextHop
A 1 A
B 2 A
C 2 A
D 3 A
F 2 A
G ∞ —

E

+

A (t1)

=

E
Dest. Cost NextHop
B 1 B
C 1 C
D 2 C
E 1 E
F 1 F
G ∞ —

A

F

E

G

B
C

D

t0 t1 t2 t3A

t0 t1 t2 t3
E

17

Routing Table Keeps Evolving

Dest. Cost NextHop
A 1 A
B ∞ —

C ∞ —

D ∞ —

F ∞ —

G ∞ —

Dest. Cost NextHop
A 1 A
B 2 A
C 2 A
D 3 A
F 2 A
G 2 A

E

+

A (t3)

=

E
Dest. Cost NextHop
B 1 B
C 1 C
D 2 C
E 1 E
F 1 F
G 2 E

A

F

E

G

B
C

D

t0 t1 t2 t3A

t0 t1 t2 t3
E

17

Routing Table Keeps Evolving

A

F

E

G

B
C

D

Distance to Reach Node (Global View)

A B C D E F G
A 0 1 1 2 1 1 2

B 1 0 1 2 2 2 3

C 1 1 0 1 2 2 2

D 2 2 1 0 3 2 1

E 1 2 2 3 0 2 3

F 1 2 2 2 2 0 1

G 2 3 2 1 3 1 0
18

A Temporary Stable Distance Table

Distance Vector Discussion

19

• Distance vector routing is based on the Bellman-Ford algorithm
• Compute shortest paths from a single source vertex to all of the other
vertices in a weighted directed graph

• Worst-case: O(|V|.|E|)

• Best-case: O(l.|E|), where l is the
maximum length of a shortest path

Distance Vector Discussion

19

• Distance vector routing is based on the Bellman-Ford algorithm
• Compute shortest paths from a single source vertex to all of the other
vertices in a weighted directed graph

• Each router sends its distance vector to its neighbors periodically

• Each router then update its table based on the new vector

Distance Vector Discussion

19

• Distance vector routing is based on the Bellman-Ford algorithm
• Compute shortest paths from a single source vertex to all of the other
vertices in a weighted directed graph

• Each router sends its distance vector to its neighbors periodically

• Each router then update its table based on the new vector

 Advantage

• Fast response to the good news
 Disadvantage

• Slow response to the bad news

A

F

E

G

B
C

D

X

20

Distance Vector Under Link Failures

A

F

E

G

B
C

D

X
• F detects that the link to G has failed

20

Distance Vector Under Link Failures

A

F

E

G

B
C

D

X
• F detects that the link to G has failed

• F sets the distance to G as infinity and sends updates to A

20

Distance Vector Under Link Failures

A

F

E

G

B
C

D

X
• F detects that the link to G has failed

• F sets the distance to G as infinity and sends updates to A

• A sets the distance to G to infinity since it uses F to reach G

20

Distance Vector Under Link Failures

A

F

E

G

B
C

D

X
• F detects that the link to G has failed

• F sets the distance to G as infinity and sends updates to A

• A sets the distance to G to infinity since it uses F to reach G

• A receives a periodic update from C with a 2-hop path to G

20

Distance Vector Under Link Failures

A

F

E

G

B
C

D

X
• F detects that the link to G has failed

• F sets the distance to G as infinity and sends updates to A

• A sets the distance to G to infinity since it uses F to reach G

• A receives a periodic update from C with a 2-hop path to G

• A sets the distance to G to 3 and sends an update to F

20

Distance Vector Under Link Failures

A

F

E

G

B
C

D

X
• F detects that the link to G has failed

• F sets the distance to G as infinity and sends updates to A

• A sets the distance to G to infinity since it uses F to reach G

• A receives a periodic update from C with a 2-hop path to G

• A sets the distance to G to 3 and sends an update to F

• F decides it can reach G in 4 hops via A

20

Distance Vector Under Link Failures

21

Distance Vector Converges Slowly

• Converge: the process of getting consistent routing information
to all the routers

• Slightly different circumstances can prevent the network from
stabilizing

A

F

E

G

B
C

DX

• At t0, A detects the link failure and advertises a distance of infinity to E

• At t1, B and C receive the message, and update the routing table accordingly

t0 t1A

t0 t1B

t0 t1C

A Slow Converging Example

22

A

F

E

G

B
C

DX

• At t0, A detects the link failure and advertises a distance of infinity to E

• At t1, B receives the message from A and updates the routing table as <E, Infinity>

• At t2, B receives the message from C (saying the distance to E is 2), and updates the

routing table as <E, 3>

t0 t1 t2A

t0 t1 t2B

t0 t1 t2C

22

A Slow Converging Example

A

F

E

G

B
C

DX

• At t0, A detects the link failure and advertises a distance of infinity to E

• At t1, B receives the message from A and updates the routing table as <E, Infinity>

• At t2, B receives the message from C (saying the distance to E is 2), and updates the

routing table as <E, 3>

• At t3, C receives the message from A and updates the routing table as <E, Infinity>

t0 t1 t2 t3A

t0 t1 t2 t3B

t0 t1 t2 t3C

22

A Slow Converging Example

A

F

E

G

B
C

DX

• At t4, C receives the message from B (saying the distance to E is 3), and updates the

routing table as <E, 4>

• At t4, A receives the message from B (saying the distance to E is 3), and updates the

routing table as <E, 4>

t0 t1 t2 t3A

t0 t1 t2 t3B

t0 t1 t2 t3C

t4

t4

t4

22

A Slow Converging Example

A

F

E

G

B
C

DX

• At t4, C receives the message from B (saying the distance to E is 3), and updates the

routing table as <E, 4>

• At t4, A receives the message from B (saying the distance to E is 3), and updates the

routing table as <E, 4>

• A will advertise this new changes to C, then C advertises B, B advertises A, …

t0 t1 t2 t3A

t0 t1 t2 t3B

t0 t1 t2 t3C

t4

t4

t4

22

A Slow Converging Example

A

F

E

G

B
C

DX

• At t4, C receives the message from B (saying the distance to E is 3), and updates the

routing table as <E, 4>

• At t4, A receives the message from B (saying the distance to E is 3), and updates the

routing table as <E, 4>

• A will advertise this new changes to C, then C advertises B, B advertises A, …

t0 t1 t2 t3A

t0 t1 t2 t3B

t0 t1 t2 t3C

t4

t4

t4

This cycle stops only when the distances reach some threshold that is large
enough to be considered infinite

• This is called the count-to-infinity problem

22

A Slow Converging Example

23

Count-to-Infinity Problem: A Simple Fix

• Use a relatively small number as an approximation of infinity
• The maximum number of hops to traverse a network never exceeds 16

A

F

E

G

B
C

DX
X

24

Routing Information Protocol (RIP)

• Earliest IP routing protocol
• 1982 BSD of Unix
• The current standard is version 2 (RFC 1723)

• Sending updates
• Routers listen for updates on the UDP port 520
• Frequency: 30 seconds
• Triggered when an entry is changed

• Features
• Cost: the number of hops
• “Infinity” = 16

Summary

• Today
• Distance vector routing

• Next lecture
• Link state routing

25

