Distance Vector Routing

Ming Liu
mgliu@cs.wisc.edu


https://pages.cs.wisc.edu/~mgliu/CS640/S25/index.html

Outline

| ast
* Efficient Addressing

* Joday

* Distance Vector Routing

e Announcements
e ab2 due on 03/04/2025 12:01PM
* Quiz2 in-class next Thursday (03/06/2025)



Recap: Forwarding v.s. Routing

» Forwarding refers to the router-local action of transferring a

packet from an input interface to the appropriate output interface
* Usually implemented in the hardware
* O(nanosecond)
* Data plane

Routing
processor

[ —————

Routing, management
control plane (software)

|
|
|
|
1
Forwarding |
data plane (hardware) :
|
|
W

Input port

Output port

— > > —-b.

Output port

‘ —_ »> -+




Recap: Forwarding v.s. Routing

* Routing refers to the network-wide process that determines the

end-to-end paths that packets take from source to destination
* Usually implemented in the software (and hardware)
* O(second)
* Control plane

s S
- N w?” N

%

 y S

S &

=




Recap: Forwarding v.s. Routing

* Routing refers to the network-wide process that determines the

end-to-end paths that packets take from source to destination
* Usually implemented in the software (and hardware)
* O(second)
* Control plane

uy S
- N

_AN

Ny s
w? N

_— — -

Our Focus Today




Routing Logics
-—————»‘FEEEE%B——————»

D = destination IP address
for each entry (SubnetNum, SubnetMask, NextHop)
D1 = SubnetMask & D
if D1 = SubnetNum
if NextHop is an interface
deliver datagram directly to D
else
deliver datagram to NextHop




Routing Logics

4
i en
Ident Flags set
I ~ I T Tk Protocol Checksum

PP, P P g s gy
D = destination IP address ’////'

for each entry (SubnetNum, SubnetMask, NextHop)
D1 = SubnetMask & D
if D1 = SubnetNum
if NextHop is an interface
deliver datagram directly to D
else
deliver datagram to NextHop




Routing Logics
——————>‘FE=EE%B——————>

, , Lookup Routing Table
D = destination IP address
D1 = SubnetMask & D
if D1 = SubnetNum
if NextHop is an interface
deliver datagram directly to D
else
deliver datagram to NextHop




Routing Logics
——————>‘FE=EE%B——————>

D = destination IP address

for each ent (SubnetNum, SubnetMask, NextHop)
D1 = SubnetMask & D

if D1 = SubnetNum Compute Subnet Number
if NextHop is an interface

deliver datagram directly to D
else
deliver datagram to NextHop




Routing Logics
——————>‘FE=EE%B——————>

D = destination IP address

for each entry (SubnetNum, SubnetMask, NextHop)
D1 = SubnetMask & D A matched entry is found

if D1 = SubnetNum

if NextHop is an interface
deliver datagram directly to D
else
deliver datagram to NextHop




Routing Logics
——————>‘FE=EE%B——————>

D = destination IP address
for each entry (SubnetNum, SubnetMask, NextHop)

D1 = SubnetMask & D _
if D1 = SubnetNum HOSts connects to the router directly

if NextHop is an interface
deliver datagram directly to D

else
deliver datagram to NextHop




Routing Logics
——————>‘FE=EE%B——————>

D = destination IP address
for each entry (SubnetNum, SubnetMask, NextHop)

D1 = SubnetMask & D
if D1 = SubnetNum

if NextHop is an interface
deliver datagram directly to D

else
deliver datagram to NextHop



How can we build the routing table?

D = destination IP address

for each entry (SubnetNum, SubnetMask, NextHop)

D1 = SubnetMask & D
if D1 = SubnetNum
i1f NextHop is an interface
deliver datagram directly to D
else
deliver datagram to NextHop




Routing Algorithm/Protocol

* Represent connected networks as a graph
* Vertices In the graph are routers
* Edges in the graph links

 Links (Edges) have communication cost, which can be quantized
* £.g., physical distance, latency, throughput, etc.



Routing Challenges

* #1: Network hardware fabric is dynamic
* Links and routers can falil

» #2: Network traffic is dynamic
* A router or link can be overloaded

* #3: The communication cost is dynamic
* The quantized value depends on both physical and runtime properties

e #4: There IS no central view
 Protocols must work in a distributed fashion



Naive Approach

» Static configuration

» Calculate preferred paths mannually
* Fill them into the routing table

e Drawbacks
* No adaptation
 Unable to scale



Distance Vector Routing

» Key idea:
* Each router constructs a one-dimensional array (vector) that contains the
“distance” (cost) to all other nodes
* Distributes that vector to its immediate neighbors

* Assumption
* Each router knows the cost of the link to its directly connected neghbors

10



Distance Vector Protocol

11



Step 1: Figure Out Initial Distance

Distance to Reach Node (Global View)

1 A | B | ¢c | b | E
A 1 ! 1 1 1
8 1 | [ 1 |
c 1 1 1 [ 1
0o | | [ 1 |
e 1 ! [ 1 |
F 1 ! [ 1 |
6 | 1 | [ ]

12



Step 1: Figure Out Initial Distance

1 A | B | c | D
=P A | o I + T + 1 «
B8 1 | ! ]
c 1 1 [ 1
o | | [ ]

12



Step 1: Figure Out Initial Distance

Distance to Reach Node (Global View)

12



Step 1: Figure Out Initial Distance

Distance to Reach Node (Global View)

1 A | B | c | D
““--_
1

12



Step 1: Figure Out Initial Distance

Distance to Reach Node (Global View)

1 A | B | c | D
A ] o | v | 1 ] e«
B | t | o | 1 ] o«
¢ | + 1 + | o ] 1
“““-“

12



Initial Routing Table

_ Destination |  Cost | NextHop

8 | 0+ 1 B
. c ! v+ | c
e | v+ | E
___F ! v 1 F

13



Initial Routing Table

~ O —¢

_ Destination |  Cost | NextHop
A v oA

. c ! v+ | c

13



Initial Routing Table

G‘:?»g

!

_ Destination |  Cost | NextHop
A v oA

13



Initial Routing Table

Gj»e .
Sk

_ Destination |  Cost | NextHop
A v oA

¢ [ ~ 1 -

13



Initial Routing Table

_ Destination |  Cost | NextHop

A [ o A
¢ [ ~ 1 -
6 [ - | &

13



Step 2: Exchange the Distance Vector

14



Step 2: Exchange the Distance Vector

14



Step 2: Exchange the Distance Vector

14



Step 3+: Keep Exchange Vectors Until Stable

15



Step 3+: Keep Exchange Vectors Until Stable

15



Step 3+: Keep Exchange Vectors Until Stable

15



Step 3+: Keep Exchange Vectors Until Stable

15



Step 3+: Keep Exchange Vectors Until Stable

15



Step 3+: Keep Exchange Vectors Until Stable

15



Route Selection

B ) _

- New_Cost (node) = Cost(node) (from neighbor) + Cost (node- nelghbor)

- Cost (node-neighbor) = 1 in the above discussion
-« |f next_hop (new) == next_hop (old)

. Cost = New_Cost

- Else 1

- Cost = Min (New_Cost, Old_Cost) {

- Update the next hop to the neighbor node

|

- The routing table is evolving ]
« Based on the event sequence *

16



Routing Table Keeps Evolving

17



Routing Table Keeps Evolving

A 1 1 1

to t1 t2 {3

17



A Temporary Stable Distance Table

Distance to Reach Node (Global View)

1 A | B | c | D
A ] o | v | v ] 2
B | + | o [ v ] 2
¢ | + 1 + | o ] 1
2 | 2 | v ] o
1 2 | 2 | 3

2 1 2 | 2
2 ] ] 3 |

_E
1
0




Distance Vector Discussion

* Distance vector routing Is based on the Bellman-Ford algorithm

* Compute shortest paths from a single source vertex to all of the other
vertices in a weighted directed graph

ON A ROUTING PROBLEM*
By RICHARD BELLMAN (The RAND Corporation)

Summary. Given a set of N cities, with every two linked by a road, and the times
required to traverse these roads, we wish to determine the path from one given city to
another given city which minimizes the travel time. The times are not directly pro-
portional to the distances due to varying quality of roads and varying quantities of
traffic.

The functional equation technique of dynamic programming, combined with approxi-
mation in policy space, yields an iterative algorithm which converges after at most
(N — 1) iterations. '

1. Introduction. The problem we wish to treat is a combinatorial one involving
the determination of an optimal route from one point to another. These problems are
usually difficult when we allow a continuum, and when we admit only a discrete set
of paths, as we shall do below, they are notoriously so.

The purpose of this paper is to show that the functional equation technique of
dynamic programming, [1, 2], combined with the concept of approximation in policy o WO r St - C a S e [ | 0 v E
space, yields a method of successive approximations which is readily accessible to either n n

hand or machine computation for problems of realistic magnitude. The methou is dis-
tinguished by the fact that it is a method of exhaustion, i.e. it converges after a finite
number of iterations, bounded in advance.
2. Formulation. Consider a set of N cities, numbered in some arbitrary fashion =
from 1 to N, with every two linked by a direct road. The time required to travel from ® B e St - c a Se u O (I | E |) W h e re I I s t h e
7 to j is not directly proportional to the distance between 7 and j, due to road conditions m [ ,
and traffic. Given the matrix T = ({;;), not necessarily symmetric, where ¢,; is the
time required to travel from z to j, we wish to trace a path between 1 and N which

-
consumes minimum time.
Since there are only a finite number of paths available, the problem reduces to m aXI m u m e n g o a S o r es pa

choosing the smallest from a finite set of numbers. This direct, or enumerative, approach
is impossible to execute, however, for values of N of the order of magnitude of 20.

We shall construct a search technique which greatly reduces the time required to
find minimal paths.

3. Functional equation approach. Let us now introduce a dynamic programming
approach. Let

f; = the time required to travel fromztoN,z = 1,2, --- /N — 1,
using an optimal policy, _ 3.1)
With f,‘\" = 0.

Employing the principle of optimality, we see that the f; satisfy the nonlinear system
of equations

fo=Min[t; + fi], i=1,2,N—1,
i (32)
fN = 0.

*Received January 30, 1957.




Distance Vector Discussion

* Distance vector routing Is based on the Bellman-Ford algorithm
* Compute shortest paths from a single source vertex to all of the other
vertices in a weighted directed graph

* Each router sends its distance vector to its neighbors periodically

* Each router then update its table based on the new vector

19



Distance Vector Discussion

* Distance vector routing Is based on the Bellman-Ford algorithm
* Compute shortest paths from a single source vertex to all of the other
~vertices Iin a weighted directed graph

- Advantage

 Fast response to the good news
Disadvantage

- Slow response to the bad news

19



Distance Vector Under Link Failures

20



Distance Vector Under Link Failures

- F detects that the link to G has failed

20



Distance Vector Under Link Failures

- F detects that the link to G has failed
- F sets the distance to G as infinity and sends updates to A

20



Distance Vector Under Link Failures

- F detects that the link to G has failed
- F sets the distance to G as infinity and sends updates to A
- A sets the distance to G to infinity since it uses F to reach G

20



Distance Vector Under Link Failures

- F detects that the link to G has failed

- F sets the distance to G as infinity and sends updates to A

- A sets the distance to G to infinity since it uses F to reach G

- A receives a periodic update from C with a 2-hop path to G

20



Distance Vector Under Link Failures

= =

- F detects that the link to G has failed

- F sets the distance to G as infinity and sends updates to A

- A sets the distance to G to infinity since it uses F to reach G

- A receives a periodic update from C with a 2-hop path to G
- A sets the distance to G to 3 and sends an update to F

20



Distance Vector Under Link Failures

= =

- F detects that the link to G has failed

- F sets the distance to G as infinity and sends updates to A

- A sets the distance to G to infinity since it uses F to reach G

- A receives a periodic update from C with a 2-hop path to G
- A sets the distance to G to 3 and sends an update to F

- F decides it can reach G in 4 hops via A

20



Distance Vector Converges Slowly

» Converge: the process of getting consistent routing information
to all the routers

» Slightly different circumstances can prevent the network from
stablilizing

21



A Slow Converging Example

» At to, A detects the link failure and advertises a distance of infinity to E
- At t1, B and C receive the message, and update the routing table accordingly

22



A Slow Converging Example

» At to, A detects the link failure and advertises a distance of infinity to E

- At 11, B receives the message from A and updates the routing table as <E, Infinity>

- At t2, B receives the message from C (saying the distance to E is 2), and updates the
routing table as <E, 3>

22



A Slow Converging Example

» At to, A detects the link failure and advertises a distance of infinity to E

- At 11, B receives the message from A and updates the routing table as <E, Infinity>

- At t2, B receives the message from C (saying the distance to E is 2), and updates the
routing table as <E, 3>

- At t3, C receives the message from A and updates the routing table as <E, Infinity>

22



A Slow Converging Example

- At t4, C receives the message from B (saying the distance to E is 3), and updates the
routing table as <E, 4>

- At t4, A receives the message from B (saying the distance to E is 3), and updates the
routing table as <E, 4>

22



A Slow Converging Example

to t1 12 13 1a

- At t4, C receives the message from B (saying the distance to E is 3), and updates the
routing table as <E, 4>

- At t4, A receives the message from B (saying the distance to E is 3), and updates the
routing table as <E, 4>

- A will advertise this new changes to C, then C advertises B, B advertises A, ...

&

22



A Slow Converging Example

|

This cycle stops only when the distances reach some threshold that is large

enough to be considered infinite
- This is called the count-to-infinity problem

Q

22



Count-to-Infinity Problem: A Simple Fix

* Use a relatively small number as an approximation of infinity
* The maximum number of hops to traverse a network never exceeds 16

23



Routing Information Protocol (RIP)

 Earliest IP routing protocol

* 1982 BSD of Unix

* The current standard is version 2 (RFC 1723)

e Features

* Cost: the number of hops

* “Infinity” = 16

» Sending updates

* Routers listen for updates on the UDP port 520

* Frequency: 30 seconds

* Triggered when an entry is changed

0

8 16 31

Command| Version Must be zero

Family of net 1 Route Tags

Address prefix of net 1

Mask of net 1

Distance to net 1

Family of net 2 Route Tags

Address prefix of net 2

Mask of net 2

Distance to net 2

24



* Joday

* Distance vector routing

* Next lecture
* Link state routing

Summary

25



