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• Today
• Distance Vector Routing

• Announcements
• Lab2 due on 03/04/2025 12:01PM
• Quiz2 in-class next Thursday (03/06/2025)

• Last
• Efficient Addressing



Recap: Forwarding v.s. Routing
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• Forwarding refers to the router-local action of transferring a 
packet from an input interface to the appropriate output interface

• Usually implemented in the hardware
• O(nanosecond)
• Data plane
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• Routing refers to the network-wide process that determines the 
end-to-end paths that packets take from source to destination

• Usually implemented in the software (and hardware)
• O(second)
• Control plane
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• Routing refers to the network-wide process that determines the 
end-to-end paths that packets take from source to destination

• Usually implemented in the software (and hardware)
• O(second)
• Control plane

Our Focus Today
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Routing Logics
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Routing Logics

Lookup Routing Table



5

Routing Logics

Compute Subnet Number
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Routing Logics

A matched entry is found
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Routing Logics

Hosts connects to the router directly
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Routing Logics

Send to the next router
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How can we build the routing table?



Routing Algorithm/Protocol
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• Represent connected networks as a graph
• Vertices in the graph are routers
• Edges in the graph links

• Links (Edges) have communication cost, which can be quantized
• E.g., physical distance, latency, throughput, etc.



8

Routing Challenges

• #1: Network hardware fabric is dynamic
• Links and routers can fail

• #2: Network traffic is dynamic
• A router or link can be overloaded

• #3: The communication cost is dynamic
• The quantized value depends on both physical and runtime properties

• #4: There is no central view
• Protocols must work in a distributed fashion



Naive Approach

• Static configuration
• Calculate preferred paths mannually
• Fill them into the routing table
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• Drawbacks
• No adaptation
• Unable to scale
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Distance Vector Routing

• Key idea: 
• Each router constructs a one-dimensional array (vector) that contains the 
“distance” (cost) to all other nodes

• Distributes that vector to its immediate neighbors

• Assumption
• Each router knows the cost of the link to its directly connected neghbors
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  Distance is defined as the number of hops

Distance Vector Protocol
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Step 1: Figure Out Initial Distance
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Initial Routing Table
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Step 2: Exchange the Distance Vector
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Step 3+: Keep Exchange Vectors Until Stable
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• New_Cost (node) = Cost(node) (from neighbor) + Cost (node-neighbor) 
• Cost (node-neighbor) = 1 in the above discussion 

• If next_hop (new) == next_hop (old) 

• Cost = New_Cost 
• Else 

• Cost = Min (New_Cost, Old_Cost) 
• Update the next hop to the neighbor node 

• The routing table is evolving 

• Based on the event sequence
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Route Selection
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Routing Table Keeps Evolving
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A Temporary Stable Distance Table
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• Distance vector routing is based on the Bellman-Ford algorithm 
• Compute shortest paths from a single source vertex to all of the other 
vertices in a weighted directed graph

• Worst-case: O(|V|.|E|)

• Best-case: O(l.|E|), where l is the 
maximum length of a shortest path
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• Distance vector routing is based on the Bellman-Ford algorithm 
• Compute shortest paths from a single source vertex to all of the other 
vertices in a weighted directed graph

• Each router sends its distance vector to its neighbors periodically 

• Each router then update its table based on the new vector
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• Distance vector routing is based on the Bellman-Ford algorithm 
• Compute shortest paths from a single source vertex to all of the other 
vertices in a weighted directed graph

• Each router sends its distance vector to its neighbors periodically 

• Each router then update its table based on the new vector

 Advantage 

• Fast response to the good news 
 Disadvantage 

• Slow response to the bad news



A

F

E

G

B
C

D

X

20

Distance Vector Under Link Failures
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• F sets the distance to G as infinity and sends updates to A 

• A sets the distance to G to infinity since it uses F to reach G 

• A receives a periodic update from C with a 2-hop path to G 

• A sets the distance to G to 3 and sends an update to F 

• F decides it can reach G in 4 hops via A
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Distance Vector Under Link Failures
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Distance Vector Converges Slowly

• Converge: the process of getting consistent routing information 
to all the routers 

• Slightly different circumstances can prevent the network from 
stabilizing
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• At t0, A detects the link failure and advertises a distance of infinity to E 

• At t1, B and C receive the message, and update the routing table accordingly
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This cycle stops only when the distances reach some threshold that is large 
enough to be considered infinite 

• This is called the count-to-infinity problem
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Count-to-Infinity Problem: A Simple Fix

• Use a relatively small number as an approximation of infinity 
• The maximum number of hops to traverse a network never exceeds 16
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Routing Information Protocol (RIP)

• Earliest IP routing protocol 
• 1982 BSD of Unix
• The current standard is version 2 (RFC 1723)

• Sending updates 
• Routers listen for updates on the UDP port 520
• Frequency: 30 seconds
• Triggered when an entry is changed

• Features 
• Cost: the number of hops
• “Infinity” = 16



Summary

• Today
• Distance vector routing

• Next lecture
• Link state routing
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