Link State Routing

Ming Liu
mgliu@cs.wisc.edu

https://pages.cs.wisc.edu/~mgliu/CS640/S25/index.html

Outline

| ast
* Distance Vector Routing

* Joday
* Link State Routing

e Announcements
e ab2 due on 03/04/2025 12:01PM
* Quiz2 in class this Thursday (03/06/2025)

Recap: Distance Vector Routing

» Key idea:
* Each router constructs a one-dimensional array (vector) that contains the
“distance” (cost) to all other nodes
* Distributes that vector to its immediate neighbors

* Assumption
* Each router knows the cost of the link to its directly connected neghbors

Step 1: Figure Out Initial Distance

Distance to Reach Node (Global View)

1 A | B | ¢c | b | E
A] o | v |] e | 1
B | + | o [t] o | o
¢ |+ | v | o [1t] o
D | o | o | t] 0 | o
_E] 1 | o | o | o | o
_F] 1 | o | o | o | o
G | » | o | o | 1] o

_F | G
] e
o] o
o | ow
o] 1
o] o
o] v
I

Step 2: Exchange the Distance Vector

Step 3+: Keep Exchange Vectors Until Stable

A Temporary Stable Distance Table

Distance to Reach Node (Global View)

1 A | B | c | D
A] o | v | v] 2
B | + | o [v] 2
¢ | + 1 + | o] 1
2 | 2 | v] o
1 2 | 2 | 3

2 1 2 | 2
2]] 3 |

_E
1
0

Distance Vector Discussion

* Distance vector routing Is based on the Bellman-Ford algorithm
* Compute shortest paths from a single source vertex to all of the other
vertices in a weighted directed graph

* Each router sends its distance vector to its neighbors periodically

* Each router then update its table based on the new vector

Distance Vector Discussion

* Distance vector routing Is based on the Bellman-Ford algorithm
* Compute shortest paths from a single source vertex to all of the other
~vertices Iin a weighted directed graph

- Advantage

 Fast response to the good news
Disadvantage

- Slow response to the bad news

A Slow Converging Example

to t1 12 13 1a

- At t4, C receives the message from B (saying the distance to E is 3), and updates the
routing table as <E, 4>

- At t4, A receives the message from B (saying the distance to E is 3), and updates the
routing table as <E, 4>

- A will advertise this new changes to C, then C advertises B, B advertises A, ...

&

A Slow Converging Example

|

This cycle stops only when the distances reach some threshold that is large

enough to be considered infinite
- This is called the count-to-infinity problem

Q

How does the link state routing address the
iIssues of the distance vector routing?

Link State Routing

» Key idea:
* Send all nodes (not just neighbors) information about the communication
cost of direct-connected links (not the entire routing table)
* Each node has complete information about the whole network
* Find the shortest path between two nodes of the network

11

Link State Routing

» Key idea:
* Send all nodes (not just neighbors) information about the communication
cost of direct-connected links (not the entire routing table)
* Each node has complete information about the whole network
* Find the shortest path between two nodes of the network

* Advantage:
* Converge quickly under static conditions

11

Two Steps

» Step #1: Reliable flooding

» Step #2: Route calculation

12

Step #1: Reliable Flooding

* A node sends its link-state information to all of its directly
connected links

 Each node that receives this information then forwards it out on
all 1ts links

13

Step #1: Reliable Flooding

* A node sends its link-state information to all of its directly
connected links

 Each node that receives this information then forwards it out on
all 1ts links

What is the link-state information?

— e —

13

Step #1: Reliable Flooding

* A node sends its link-state information to all of its directly
connected links

 Each node that receives this information then forwards it out on
all 1ts links

What is the link-state information?

— E— —— — ——— e — —

Link state packet (LSP)

|

-+ The ID of the node that created the LSP
* The cost of the link to each directly connected neighbor

» The sequence number (SEQ#)
* The time-to-live (TTL) of this packet

13

Link State Packet (LSP): Sequence Number

* Goal: identify the latest link cost

14

Link State Packet (LSP): Sequence Number

* Goal: identify the latest link cost

Sender logic:
» Generate a new LSP periodically

@),
i
Q)
—
@),
M
| O
rd
Q)
o
<
iué
>
D
D)
S
o
D
O
O
o
D
o)
Q)
D)
o
-
o
e
o
3
| @
)
| —

N

Receiver logic:

* Upon receiving a copy of LSP (A) 1

Check if it has already received a copy (A’) before ;

If A == NULL, then accept f

If A’ 1= NULL |

If A.SEQ# > A.SEQ#, then accept; Otherwise, ignore

Forward A to all its neighbors except the neighbor from which the LSP was just)
received

_ _ — = - - = - - = —

14

Link State Packet (LSP): Time-To-Live (TTL)

* Decrement the TTL field when storing the LSP

e Discard the LSP when its TTL becomes O

15

A Flooding Example

(a)

A Flooding Example

A Flooding Example

A Flooding Example

N\
.-
(O—(C— O—
(C) (d)
l

Link State Routing: Two Steps

» Step #1: Reliable flooding
 Each node maintains a global view of the network

» Step #2: Route calculation

17

LSP Table

LSP Table

RouterAlnfo.| 1D | LinkCosts | SEQs | TIL _
__ALSP | A | MBI-SIACI=0 | 1 | 64
“ B, Al =5,[B,C]=3,[B,D]=11 _
[C, Al =10,[C,B]=3,[C,D]=2 _
_Disk | D | DB-1DC-z | 1 | 6

18

LSP Table

RouterBlinfo.| ID | LinkCosts | SEQs | TTL
Y N e R
BT R I A
BT I e R
BT N R N

18

LSP Table

RouterBlinfo.| ID | LinkCosts | SEQs | TTL
_ALSP | A | MBI-sACl-10] ot | &
_BLSP | B | BA-sBC-aBO-1r [1 | 64
C,Al=10,[C,Bl=3,[C,DI=2 | 1 [e
_DLsP | D [®B-nDC-z] t | &

18

Problem Formulation

» Compute the shortest path between any two nodes i and j, given:
* N: the set of nodes in the graph
* |(1,]): the non-negative cost associated with the edge between two nodes
I, J€N and I(i,)) = o If no edge connects | and |

19

Problem Formulation: Dijkstra Algorithm

» Compute the shortest path between any two nodes i and j, given:
* N: the set of nodes in the graph
* |(1,]): the non-negative cost associated with the edge between two nodes
I, J€N and I(i,)) = o If no edge connects | and |

19

Dijkstra’s Shortest-Path Routing

* Inputs:
* N: the set of nodes in the graph
* |(1,]): the non-negative cost associated with the edge between two nodes
I, J€ N and [(i,]) = o« If no edge connects | and |

20

Dijkstra’s Shortest-Path Routing

* Inputs:
* N: the set of nodes in the graph
* |(1,]): the non-negative cost associated with the edge between two nodes
I, J€ N and [(i,]) = o« If no edge connects | and |

— — ——

Let sMQ node WhiCH ei;eh algit '
find shortest paths to all other nodes +

20

Dijkstra’s Algorithm

 Variables:
* M: set of nodes incorporated so far by the algorithm
* C(n): the cost of a path from s to each node n

— —

|
.,\
|
|
|
|
|
|
|
|
|

:
I

M= (8]
- for each n 1n N - {S} (
' C(n) = 1(s, n) /* costs of directly connected nodes */ ;
while (N # M)
M =M {w} such that C(w) 1s the minimum for all w 1n (N - M)
for each n in (N - M) /* recalculate costs */
C(n) = MIN(C(n), C(w) + 1(w,n))]
_

|

_____ - _— — — — — — N

21

Building Routing Table for Node D

Building Routing Table for Node D

_ Step | Confimedlist | |Tentativelist | Comment
-t r
I e e
I e e
-t r
I e e
I e I

22

Building Routing Table for Node D

“Sop | Gommeaist | Toaiverst | Gommen

I N I S
.

— T - —

-

T

I I I

22

Building Routing Table for Node D

22

Building Routing Table for Node D

Routing table entry:
(Destination, Cost, NextHop)

m Confirmed list Tentative list Comment
— D, o, -) _ Initialize with an entry for myself

22

Building Routing Table for Node D

Routing table entry:
(Destination, Cost, NextHop)

Step | Confirmed list Tentative list ___Comment . 1 _
M= {S}
for each n 1in N - {S}
| C(n) = 1(s, n) /* costs of directly connected nodes */

M= MU({w} such that C(w) 1s the minimum for all w in (N - M)
for each n in (N - M) /* recalculate costs */
C(n) = MIN(C(n), C(w) + 1(w,n)) |

— — — —

|

i

while (N # M) \
|

— = —— —— — = — — —_— — = ——

Building Routing Table for Node D

Routing table entry:
(Destination, Cost, NextHop)

I TN I L R

22

Building Routing Table for Node D

Routing table entry:
(Destination, Cost, NextHop)

for each n in (N - M) /* recalculate costs */
C(n) = MIN(C(n), C(w) + 1l(w,n))

_ — ——

|

|

i

M= MU{w} such that C(w) 1s the minimum for all w 1n (N - M)

— e — —_

Building Routing Table for Node D

Routing table entry:
(Destination, Cost, NextHop)

_ Step | Confimedlist | |Tentativelist | Comment
N N e L
2 | ©o) | B1B.C20 [msedondese
3 | ©03€20
-t r
I e e
I e I

22

Building Routing Table for Node D

Routing table entry:
(Destination, Cost, NextHop)

Step | Confirmed list Tentative list ___Comment . 1
M = {5}
for each n 1in N - {S}
| C(n) = 1(s, n) /* costs of directly connected nodes */

while (N # M)

for each n in (N - M) /* recalculate costs */
C(n) = MIN(C(n), C(w) + 1l(w,n))

— = e — —— - = > = — — e — = ——

Building Routing Table for Node D

Routing table entry:
(Destination, Cost, NextHop)

“Sip | Contimeatst | temavelst | Gommem
B BT I T
" [o0 [En56a0 o
"+ [009620 | ®e0nm0 |mmocs s mommme e
N R I R
-

22

Building Routing Table for Node D

Routing table entry:
(Destination, Cost, NextHop)

Step | Confirmed list Tentative list ___Comment . 1 i
M = {5}
for each n 1in N - {S}
| C(n) = 1(s, n) /* costs of directly connected nodes */

M = MU{w} such that C(w) i1is the minimum for all w in (N - M)
for each n in (N - M) /* recalculate costs */
C(n) = MIN(C(n C(w) + 1(w,n |

|
while (N # M) \
|

22

Building Routing Table for Node D

Routing table entry:
(Destination, Cost, NextHop)

_ Step | Confimedlist | |Tentativelist | Comment
N N e L
2 | ©o) | B1B.C20 [msedondese
3 | ©03€20
4] ©09C20 [®50)(A120 IesedonCsispandrecauatomocost
5 |00 ©C20Bs0| (A120) eyt owestcost memberof entaie st
I e I

22

Building Routing Table for Node D

Routing table entry:
(Destination, Cost, NextHop)

Step | Confirmed list Tentative list ___Comment . 1
M = {5}
for each n 1in N - {S}
| C(n) = 1(s, n) /* costs of directly connected nodes */

while (N # M)

for each n in (N - M) /* recalculate costs */
C(n) = MIN(C(n), C(w) + 1l(w,n))

— = e — —— - = > = — — e — = ——

Building Routing Table for Node D

Routing table entry:
(Destination, Cost, NextHop)

“Step | Confimedlist | Tomativelist | Commemt
| ®oes | |nieiowtanemytormyser
2z | ®©®o9 | BB.C20 |Basedonosise
4 | ©046©20 | 850, A0 [BasedonCsLsPand recauotocost
5 [P09G20B5C| (A120 |itegrate owostcostmembeorof tentative ist
— (D, o, -), (C, 2, C), (B, 5, C) Based on B's LSP, i.e, I(D, A) = (D, B) + I(B, A)

22

Building Routing Table for Node D

Routing table entry:
(Destination, Cost, NextHop)

Step | Confirmed list Tentative list ___Comment . 1 i
M = {5}
for each n 1in N - {S}
| C(n) = 1(s, n) /* costs of directly connected nodes */

M =M {w} such that C(w) 1s the minimum for all w in (N - M)
for each n in (N - M) /* recalculate costs */
C(n) = MIN(C(n), C(w) + 1(w,n)) |

S = = - - — — —

6 (D,0,-),(C,2,0),B,50C| (A 10,0 [BasedonBsLSP,ie.ID A =ID B)+IB

|
|
i
while (N # M) \
|

22

Building Routing Table for Node D

Routing table entry:
(Destination, Cost, NextHop)

I TN I L R

~ Jtative list

:\ D, 0,-),(C,2,C), B,5,C), (A, 10, C)
D, L, J

22

Building Routing Table for Node A

Routing table entry:
(Destination, Cost, NextHop)

Step| Confirmedlist | Tentativelist | Comment
I I
I I
N I I
I I
I I
I I
{1 OO

23

Building Routing Table for Node A

Routing table entry:
(Destination, Cost, NextHop)

Step| Confirmedlist | Tentativelist | Comment
] Ao9 0) 000 [mitelomncniyiormysdt
—
3 Ao B 5B
KN Ao, 5.5.B
B B NN X R e e e
n (A 0, -), (B 5, B) C 8, B) BasedonCsLSP .e., I(A, D) = I(A, C) + I(C, D)

" [A01858.CoB 0B | |neciovesoo monborot e

23

Link State Routing: Two Steps

» Step #1: Reliable flooding
* Each node maintains a global view of the network

» Step #2: Route calculation
* Use the Dijkstra algorithm to figure out the shortest path

24

Open Shortest Path First (OSPF)

* OSPF Distance vector routing in practice
* Originally designed in the 1980s
* V2 is defined in RFC 2328 (1998)
* V3 is defined in RFC 5340 (2008)

24

Open Shortest Path First (OSPF)

Version Type Message length
SourceAddr
Areald
Checksum Authentication type
Authentication

OSPF header format

Open Shortest Path First (OSPF)

Version Type Message length

SourceAddr

cation type

Authentication

Open Shortest Path First (OSPF)

Version

16 31
Type Message length

Checks

SourceAddr

Five different OSPF messages

 For example, type = 1 is the “hello” message as
the heartbeat signal

Authentication

24

Open Shortest Path First (OSPF)

0 16 31
Version Type Message length
SourceAddr
Areald
Checksum ‘ Authentication type

Autl{SourceAddr: the sender of the message

Areald: the identifier of the area in which the node is located

24

Open Shortest Path First (OSPF)

Version Type Message length

SourceAddr
Areald

Checksum Authentication type

Authentication

Checksum: same as the IP checksum
Authentication:

e 0, NO authentication
e 1, a simple password
e 2, a cryptographic authentication checksum

Open Shortest Path First (OSPF)

LS Age

Link-state 1D
Advertising router
LS sequence number

LS checksum Length
0 |Flags 0 Number of links
Link ID
Link data
Link type | Num TOS Metric

Optional TOS information

More links

OSPF link-state advertisement

OSPF: Link State Packet

LS Age

Link-state ID

Advertising router

LS sequence number

LS checksum Length

0 |Flags 0 Number of links

Link ID

Link data

Link type | Num TOS Metric

Optional TOS information

More links

OSPF link-state advertisement

Link state packet (LSP)
- |ID of the node that created the LSP

- Cost of link to each directly connect neighbor

- Sequence number (SEQ#)
- Time-to-live (TTL) for this packet

25

OSPF: Link State Packet

LS Age Options Type=1 -
= Link state packet (LSP)
Advertising router - |D of the node that created the LSP
LS sequence number . Cost of link to each directly connect neighbor
LS checksum Length
0 |Flags 0 Number of links Sequence number (SEQ#)
Link ID - Time-to-live (TTL) for this packet
Link data
Link type | Num TOS Metric
Optional TOS information
More links

OSPF link-state advertisement

25

OSPF: Link State Packet

LS Age Options Type=1 -
TS Link state packet (LSP)
Advertising router - |D of the node that created the LSP
LS Sequence number - Cost of link to each directly connect neighbor
LS checksum Length
0 |Flags 0 Number of linke Sequence number (SEQ#)
Link ID - Time-to-live (TTL) for this packet
Link data
Link type || Num _TOS | Metric
Optional TOS jinformation
More links

OSPF link-state advertisement

25

OSPF: Link State Packet

LS Age Options Type=1 -
TS Link state packet (LSP)
Advertising router - |D of the node that created the LSP
=S Sequence number - Cost of link to each directly connect neighbor
LS checksum Length
0 |Flags| 0 Number of links Sequence number (SEQ#)
Link ID - Time-to-live (TTL) for this packet
Link data
Link type | Num TOS Metric
Optional TOS information
More links

OSPF link-state advertisement

25

OSPF: Link State Packet

Advertising route

LS sequence number

LS checksum Length

0 |Flags 0 Number of links

Link ID

Link data

Link type | Num TOS Metric

Optional TOS information

More links

OSPF link-state advertisement

Link state packet (LSP)
- |ID of the node that created the LSP

- Cost of link to each directly connect neighbor

- Sequence number (SEQ#)
- Time-to-live (TTL) for this packet

25

Link State v.s. Distance Vector

25

Link State v.s. Distance Vector

* Link state routing
* High messaging overhead
* Computing complexity

e Distance vector

* Slow convergence
 Race conditions

25

Communication Cost: A Non-trivial Metric

Assumption of dlstancevector.

- Each node knows thetcost of the Imk 0 each of its directly connected neighbors

Assumption of link state:

 Each node can find out the state of the link to its neighbors and@he cost of each link |

26

Metrics for Link Cost

e #1: the number of hops

o #2: original ARPANET metric

* link cost == the number of packets enqueued on each link
* Take latency and bandwidth into consideration

27

This (#2) moves packets towards the shortest queue, not the destination!!

L

Metrics for Link Cost

e #1: the number of hops

o #2: original ARPANET metric

* link cost == the number of packets enqueued on each link
* Take latency and bandwidth into consideration

27

Metrics for Link Cost (Cont’d)

* #3. new ARPANET metric

* link cost == the average delay over some time period
* Sample each incoming packet with its arrival time (AT)
* Record the departure time (DT)
* When link-level ACK arrives, compute
* Delay = (DT - AT) + Transmit + Latency, where transmit and Latency are
static for the link
* [f timeout, reset DT to the departure time for retransmission

27

Recap: The Router Architecture—Routing Processor

* Routing Processor:
* Execute the routing protocols
* Maintain routable tables and attached link state information
» Compute the forwarding table for the router

______ Routing
. i processor
Routing, management |
control plane (software) i
______________________ I S S s S S S S S S S S A S S S S S S S S S S S
. |
Forwarding |
data plane (hardware) }
|
Input port { Output port
w
‘ > +> > — — O » -—»‘
i
|
| Switch
Input port | fabric Output port
v
~ — > > — - » > -»\

Recap: The Router Architecture—Routing Processor

* Routing Processor:
* Execute the routing protocols
* Maintain routable tables and attached link state information
» Compute the forwarding table for the router

| Routing
processor

Routing, management
control plane (software)

—————————————— — —— —— ———— ——— — — — — — — . —————— —— ————————— —— — — —— ———— ———— ——. ——. —,"

Forwarding

There Is where the link state routing or distance vector routing

algorithm runs!

Input port fabric Output port
v

28

Summary

* Joday

* Link state routing

* Next lecture
» Software-Defined Networking

29

