
Ming Liu
mgliu@cs.wisc.edu

Introduction to Computer Networks

CS640
https://pages.cs.wisc.edu/~mgliu/CS640/S25/index.html

Link State Routing

1

https://pages.cs.wisc.edu/~mgliu/CS640/S25/index.html

Outline

2

• Today
• Link State Routing

• Announcements
• Lab2 due on 03/04/2025 12:01PM
• Quiz2 in class this Thursday (03/06/2025)

• Last
• Distance Vector Routing

3

Recap: Distance Vector Routing

• Key idea:
• Each router constructs a one-dimensional array (vector) that contains the
“distance” (cost) to all other nodes

• Distributes that vector to its immediate neighbors

• Assumption
• Each router knows the cost of the link to its directly connected neghbors

A

F

E

G

B
C

D

Distance to Reach Node (Global View)

A B C D E F G
A 0 1 1 ∞ 1 1 ∞
B 1 0 1 ∞ ∞ ∞ ∞
C 1 1 0 1 ∞ ∞ ∞
D ∞ ∞ 1 0 ∞ ∞ 1

E 1 ∞ ∞ ∞ 0 ∞ ∞
F 1 ∞ ∞ ∞ ∞ 0 1

G ∞ ∞ ∞ 1 ∞ 1 0
4

Step 1: Figure Out Initial Distance

Dest. Cost NextHop
B 1 B
C 1 C
D ∞ —

E 1 E
F 1 F
G ∞ —

Dest. Cost NextHop
B 1 B
C 1 C
D ∞ —

E 1 E
F 1 F
G ∞ —

A

+

B

=

A
Dest. Cost NextHop

A 1 A
C 1 C
D ∞ —

E ∞ —

F ∞ —

G ∞ —

A

F

E

G

B
C

D
t0

5

Step 2: Exchange the Distance Vector

Dest. Cost NextHop
B 1 B
C 1 C
D 2 C
E 1 E
F 1 F
G ∞ —

Dest. Cost NextHop
B 1 B
C 1 C
D 2 C
E 1 E
F 1 F
G 2 F

A

+

F

=

A
Dest. Cost NextHop

A 1 A
B ∞ —

C ∞ —

D ∞ —

F 0 F
G 1 G

A

F

E

G

B
C

D
t0 t1 t2 t3

6

Step 3+: Keep Exchange Vectors Until Stable

A

F

E

G

B
C

D

Distance to Reach Node (Global View)

A B C D E F G
A 0 1 1 2 1 1 2

B 1 0 1 2 2 2 3

C 1 1 0 1 2 2 2

D 2 2 1 0 3 2 1

E 1 2 2 3 0 2 3

F 1 2 2 2 2 0 1

G 2 3 2 1 3 1 0
7

A Temporary Stable Distance Table

Distance Vector Discussion

8

• Distance vector routing is based on the Bellman-Ford algorithm
• Compute shortest paths from a single source vertex to all of the other
vertices in a weighted directed graph

• Each router sends its distance vector to its neighbors periodically

• Each router then update its table based on the new vector

Distance Vector Discussion

8

• Distance vector routing is based on the Bellman-Ford algorithm
• Compute shortest paths from a single source vertex to all of the other
vertices in a weighted directed graph

• Each router sends its distance vector to its neighbors periodically

• Each router then update its table based on the new vector

 Advantage

• Fast response to the good news
 Disadvantage

• Slow response to the bad news

A

F

E

G

B
C

DX

• At t4, C receives the message from B (saying the distance to E is 3), and updates the

routing table as <E, 4>

• At t4, A receives the message from B (saying the distance to E is 3), and updates the

routing table as <E, 4>

• A will advertise this new changes to C, then C advertises B, B advertises A, …

t0 t1 t2 t3A

t0 t1 t2 t3B

t0 t1 t2 t3C

t4

t4

t4

9

A Slow Converging Example

A

F

E

G

B
C

DX

• At t4, C receives the message from B (saying the distance to E is 3), and updates the

routing table as <E, 4>

• At t4, A receives the message from B (saying the distance to E is 3), and updates the

routing table as <E, 4>

• A will advertise this new changes to C, then C advertises B, B advertises A, …

t0 t1 t2 t3A

t0 t1 t2 t3B

t0 t1 t2 t3C

t4

t4

t4

This cycle stops only when the distances reach some threshold that is large
enough to be considered infinite

• This is called the count-to-infinity problem

9

A Slow Converging Example

How does the link state routing address the
issues of the distance vector routing?

10

11

Link State Routing

• Key idea:
• Send all nodes (not just neighbors) information about the communication
cost of direct-connected links (not the entire routing table)

• Each node has complete information about the whole network
• Find the shortest path between two nodes of the network

11

Link State Routing

• Key idea:
• Send all nodes (not just neighbors) information about the communication
cost of direct-connected links (not the entire routing table)

• Each node has complete information about the whole network
• Find the shortest path between two nodes of the network

• Advantage:
• Converge quickly under static conditions

12

Two Steps

• Step #1: Reliable flooding

• Step #2: Route calculation

13

Step #1: Reliable Flooding

• A node sends its link-state information to all of its directly
connected links
• Each node that receives this information then forwards it out on
all its links

13

Step #1: Reliable Flooding

• A node sends its link-state information to all of its directly
connected links
• Each node that receives this information then forwards it out on
all its links

What is the link-state information?

13

Step #1: Reliable Flooding

• A node sends its link-state information to all of its directly
connected links
• Each node that receives this information then forwards it out on
all its links

What is the link-state information?

Link state packet (LSP)

• The ID of the node that created the LSP

• The cost of the link to each directly connected neighbor

• The sequence number (SEQ#)

• The time-to-live (TTL) of this packet

14

Link State Packet (LSP): Sequence Number

• Goal: identify the latest link cost

14

Link State Packet (LSP): Sequence Number

• Goal: identify the latest link cost

Receiver logic:

• Upon receiving a copy of LSP (A)

 Check if it has already received a copy (A’) before

 If A’ == NULL, then accept

 If A’ != NULL

 If A’.SEQ# > A.SEQ#, then accept; Otherwise, ignore

 Forward A to all its neighbors except the neighbor from which the LSP was just
received

Sender logic:

• Generate a new LSP periodically

• Start SEQ# at 0 when rebooted and increment SEQ# after each LSP

15

Link State Packet (LSP): Time-To-Live (TTL)

• Decrement the TTL field when storing the LSP

• Discard the LSP when its TTL becomes 0

X(a) A

C B D

16

A Flooding Example

X(a) A

C B D

X(b) A

C B D

16

A Flooding Example

X(a) A

C B D

X(b) A

C B D

X(c) A

C B D

16

A Flooding Example

X(a) A

C B D

X(b) A

C B D

X(c) A

C B D

X(d) A

C B D

16

A Flooding Example

17

Link State Routing: Two Steps

• Step #1: Reliable flooding
• Each node maintains a global view of the network

• Step #2: Route calculation

B

A

D

C

5

10

11
3

2

18

LSP Table

B

A

D

C

5

10

11
3

2

Router A Info. ID Link Costs SEQ# TTL
A LSP A [A, B] = 5, [A, C] = 10 1 64

B LSP B [B, A] = 5, [B, C] = 3, [B, D] = 11 1 63

C LSP C [C, A] = 10, [C, B] = 3, [C, D] = 2 1 63

D LSP D [D, B] = 11, [D, C] = 2 1 62

18

LSP Table

B

A

D

C

5

10

11
3

2

Router B Info. ID Link Costs SEQ# TTL
A LSP
B LSP
C LSP
D LSP

18

LSP Table

B

A

D

C

5

10

11
3

2

Router B Info. ID Link Costs SEQ# TTL
A LSP A [A, B] = 5, [A, C] = 10 1 63

B LSP B [B, A] = 5, [B, C] = 3, [B, D] = 11 1 64

C LSP C [C, A] = 10, [C, B] = 3, [C, D] = 2 1 63

D LSP D [D, B] = 11, [D, C] = 2 1 63

18

LSP Table

B

A

D

C

5

10

11
3

2

Problem Formulation

• Compute the shortest path between any two nodes i and j, given:
• N: the set of nodes in the graph
• l(i,j): the non-negative cost associated with the edge between two nodes
i, j N and l(i,j) = ∞ if no edge connects i and j

19

B

A

D

C

5

10

11
3

2

Problem Formulation: Dijkstra Algorithm

• Compute the shortest path between any two nodes i and j, given:
• N: the set of nodes in the graph
• l(i,j): the non-negative cost associated with the edge between two nodes
i, j N and l(i,j) = ∞ if no edge connects i and j

19

20

Dijkstra’s Shortest-Path Routing

• Inputs:
• N: the set of nodes in the graph
• l(i,j): the non-negative cost associated with the edge between two nodes
i, j N and l(i,j) = ∞ if no edge connects i and j

20

Dijkstra’s Shortest-Path Routing

• Inputs:
• N: the set of nodes in the graph
• l(i,j): the non-negative cost associated with the edge between two nodes
i, j N and l(i,j) = ∞ if no edge connects i and j

Let s N be the starting node which executes the algorithm to
find shortest paths to all other nodes in N

Dijkstra’s Algorithm

21

• Variables:
• M: set of nodes incorporated so far by the algorithm
• C(n): the cost of a path from s to each node n

M = {S}
for each n in N - {S}

C(n) = l(s, n) /* costs of directly connected nodes */
while (N ≠ M)

M = M {w} such that C(w) is the minimum for all w in (N - M)
for each n in (N - M) /* recalculate costs */

C(n) = MIN(C(n), C(w) + l(w,n))

B

A

D

C

5

10

11
3

2

Building Routing Table for Node D

22

B

A

D

C

5

10

11
3

2

Step Confirmed list Tentative list Comment

Building Routing Table for Node D

22

B

A

D

C

5

10

11
3

2

Step Confirmed list Tentative list Comment

 M from the above algorithm

Building Routing Table for Node D

22

B

A

D

C

5

10

11
3

2

Step Confirmed list Tentative list Comment

 (N-M) from the above algorithm

Building Routing Table for Node D

22

B

A

D

C

5

10

11
3

2

Step Confirmed list Tentative list Comment
1 (D, 0, -) Initialize with an entry for myself

Routing table entry:
(Destination, Cost, NextHop)

Building Routing Table for Node D

22

B

A

D

C

5

10

11
3

2

Step Confirmed list Tentative list Comment
1 (D, 0, -) Initialize with an entry for myself

Routing table entry:
(Destination, Cost, NextHop)

M = {S}
for each n in N - {S}

C(n) = l(s, n) /* costs of directly connected nodes */
while (N ≠ M)

M = M {w} such that C(w) is the minimum for all w in (N - M)
for each n in (N - M) /* recalculate costs */

C(n) = MIN(C(n), C(w) + l(w,n))

Building Routing Table for Node D

22

B

A

D

C

5

10

11
3

2

Step Confirmed list Tentative list Comment
1 (D, 0, -) Initialize with an entry for myself

2 (D, 0, -) (B, 11, B), (C, 2, C) Based on D’s LSP

Routing table entry:
(Destination, Cost, NextHop)

Building Routing Table for Node D

22

B

A

D

C

5

10

11
3

2

Step Confirmed list Tentative list Comment
1 (D, 0, -) Initialize with an entry for myself
2 (D, 0, -) (B, 11, B), (C, 2, C) Based on D’s LSP

Routing table entry:
(Destination, Cost, NextHop)

M = {S}
for each n in N - {S}

C(n) = l(s, n) /* costs of directly connected nodes */
while (N ≠ M)

M = M {w} such that C(w) is the minimum for all w in (N - M)
for each n in (N - M) /* recalculate costs */

C(n) = MIN(C(n), C(w) + l(w,n))

Building Routing Table for Node D

22

B

A

D

C

5

10

11
3

2

Step Confirmed list Tentative list Comment
1 (D, 0, -) Initialize with an entry for myself

2 (D, 0, -) (B, 11, B), (C, 2, C) Based on D’s LSP

3 (D, 0, -), (C, 2, C) (B, 11, B) Integrate lowest-cost member of tentative list

Routing table entry:
(Destination, Cost, NextHop)

Building Routing Table for Node D

22

B

A

D

C

5

10

11
3

2

Step Confirmed list Tentative list Comment
1 (D, 0, -) Initialize with an entry for myself
2 (D, 0, -) (B, 11, B), (C, 2, C) Based on D’s LSP
3 (D, 0, -), (C, 2, C) (B, 11, B) Integrate lowest-cost member of tentative list

Routing table entry:
(Destination, Cost, NextHop)

M = {S}
for each n in N - {S}

C(n) = l(s, n) /* costs of directly connected nodes */
while (N ≠ M)

M = M {w} such that C(w) is the minimum for all w in (N - M)
for each n in (N - M) /* recalculate costs */

C(n) = MIN(C(n), C(w) + l(w,n))

Building Routing Table for Node D

22

B

A

D

C

5

10

11
3

2

Step Confirmed list Tentative list Comment
1 (D, 0, -) Initialize with an entry for myself

2 (D, 0, -) (B, 11, B), (C, 2, C) Based on D’s LSP

3 (D, 0, -), (C, 2, C) (B, 11, B) Integrate lowest-cost member of tentative list

4 (D, 0, -), (C, 2, C) (B, 5, C), (A, 12, C) Based on C’s LSP and recalculate the cost

Routing table entry:
(Destination, Cost, NextHop)

Building Routing Table for Node D

22

B

A

D

C

5

10

11
3

2

Step Confirmed list Tentative list Comment
1 (D, 0, -) Initialize with an entry for myself

2 (D, 0, -) (B, 11, B), (C, 2, C) Based on D’s LSP

3 (D, 0, -), (C, 2, C) (B, 11, B) Integrate lowest-cost member of tentative list

4 (D, 0, -), (C, 2, C) (B, 5, C), (A, 12, C) Based on C’s LSP and recalculate the cost

Routing table entry:
(Destination, Cost, NextHop)

M = {S}
for each n in N - {S}

C(n) = l(s, n) /* costs of directly connected nodes */
while (N ≠ M)

M = M {w} such that C(w) is the minimum for all w in (N - M)
for each n in (N - M) /* recalculate costs */

C(n) = MIN(C(n), C(w) + l(w,n))

Building Routing Table for Node D

22

B

A

D

C

5

10

11
3

2

Step Confirmed list Tentative list Comment
1 (D, 0, -) Initialize with an entry for myself

2 (D, 0, -) (B, 11, B), (C, 2, C) Based on D’s LSP

3 (D, 0, -), (C, 2, C) (B, 11, B) Integrate lowest-cost member of tentative list

4 (D, 0, -), (C, 2, C) (B, 5, C), (A, 12, C) Based on C’s LSP and recalculate the cost

5 (D, 0, -), (C, 2, C), (B, 5, C) (A, 12, C) Integrate lowest-cost member of tentative list

Routing table entry:
(Destination, Cost, NextHop)

Building Routing Table for Node D

22

B

A

D

C

5

10

11
3

2

Step Confirmed list Tentative list Comment
1 (D, 0, -) Initialize with an entry for myself

2 (D, 0, -) (B, 11, B), (C, 2, C) Based on D’s LSP

3 (D, 0, -), (C, 2, C) (B, 11, B) Integrate lowest-cost member of tentative list

4 (D, 0, -), (C, 2, C) (B, 5, C), (A, 12, C) Based on C’s LSP and recalculate the cost

5 (D, 0, -), (C, 2, C), (B, 5, C) (A, 12, C) Integrate lowest-cost member of tentative list

Routing table entry:
(Destination, Cost, NextHop)

M = {S}
for each n in N - {S}

C(n) = l(s, n) /* costs of directly connected nodes */
while (N ≠ M)

M = M {w} such that C(w) is the minimum for all w in (N - M)
for each n in (N - M) /* recalculate costs */

C(n) = MIN(C(n), C(w) + l(w,n))

Building Routing Table for Node D

22

B

A

D

C

5

10

11
3

2

Step Confirmed list Tentative list Comment
1 (D, 0, -) Initialize with an entry for myself

2 (D, 0, -) (B, 11, B), (C, 2, C) Based on D’s LSP

3 (D, 0, -), (C, 2, C) (B, 11, B) Integrate lowest-cost member of tentative list

4 (D, 0, -), (C, 2, C) (B, 5, C), (A, 12, C) Based on C’s LSP and recalculate the cost

5 (D, 0, -), (C, 2, C), (B, 5, C) (A, 12, C) Integrate lowest-cost member of tentative list

6 (D, 0, -), (C, 2, C), (B, 5, C) (A, 10, C) Based on B’s LSP, i.e., l(D, A) = l(D, B) + l(B, A)

Routing table entry:
(Destination, Cost, NextHop)

Building Routing Table for Node D

22

B

A

D

C

5

10

11
3

2

Step Confirmed list Tentative list Comment
1 (D, 0, -) Initialize with an entry for myself

2 (D, 0, -) (B, 11, B), (C, 2, C) Based on D’s LSP

3 (D, 0, -), (C, 2, C) (B, 11, B) Integrate lowest-cost member of tentative list

4 (D, 0, -), (C, 2, C) (B, 5, C), (A, 12, C) Based on C’s LSP and recalculate the cost

5 (D, 0, -), (C, 2, C), (B, 5, C) (A, 12, C) Integrate lowest-cost member of tentative list

6 (D, 0, -), (C, 2, C), (B, 5, C) (A, 10, C) Based on B’s LSP, i.e., l(D, A) = l(D, B) + l(B, A)

Routing table entry:
(Destination, Cost, NextHop)

M = {S}
for each n in N - {S}

C(n) = l(s, n) /* costs of directly connected nodes */
while (N ≠ M)

M = M {w} such that C(w) is the minimum for all w in (N - M)
for each n in (N - M) /* recalculate costs */

C(n) = MIN(C(n), C(w) + l(w,n))

Building Routing Table for Node D

22

B

A

D

C

5

10

11
3

2

Step Confirmed list Tentative list Comment
1 (D, 0, -) Initialize with an entry for myself

2 (D, 0, -) (B, 11, B), (C, 2, C) Based on D’s LSP

3 (D, 0, -), (C, 2, C) (B, 11, B) Integrate lowest-cost member of tentative list

4 (D, 0, -), (C, 2, C) (B, 5, C), (A, 12, C) Based on C’s LSP and recalculate the cost

5 (D, 0, -), (C, 2, C), (B, 5, C) (A, 12, C) Integrate lowest-cost member of tentative list

6 (D, 0, -), (C, 2, C), (B, 5, C) (A, 10, C) Based on B’s LSP, i.e., l(D, A) = l(D, B) + l(B, A)

Routing table entry:
(Destination, Cost, NextHop)

(D, 0, -), (C, 2, C), (B, 5, C), (A, 10, C)

Building Routing Table for Node D

22

B

A

D

C

5

10

11
3

2

Step Confirmed list Tentative list Comment

Routing table entry:
(Destination, Cost, NextHop)

Building Routing Table for Node A

23

B

A

D

C

5

10

11
3

2

Step Confirmed list Tentative list Comment
1 (A, 0, -) Initialize an entry for my self

2 (A, 0, -) (B, 5, B), (C, 10, C) Based on A’s LSP

3 (A, 0, -), (B, 5, B) (C, 10, C) Integrate lowest-cost member of tentative list

4 (A, 0, -), (B, 5, B) (C, 8, B), (D, 16, B) Based on B’s LSP and recalculate the cost

5 (A, 0, -), (B, 5, B), (C, 8, B) (D, 16, B) Integrate lowest-cost member of tentative list

6 (A, 0, -), (B, 5, B), (C, 8, B) (D, 10, B) Based on C’s LSP, i.e., l(A, D) = l(A, C) + l(C, D)

7 (A, 0, -), (B, 5, B), (C, 8, B), (D, 10, B) Integrate lowest-cost member of tentative list

Routing table entry:
(Destination, Cost, NextHop)

Building Routing Table for Node A

23

24

Link State Routing: Two Steps

• Step #1: Reliable flooding
• Each node maintains a global view of the network

• Step #2: Route calculation
• Use the Dijkstra algorithm to figure out the shortest path

24

Open Shortest Path First (OSPF)

• OSPF Distance vector routing in practice
• Originally designed in the 1980s
• V2 is defined in RFC 2328 (1998)
• V3 is defined in RFC 5340 (2008)

OSPF header format

24

Open Shortest Path First (OSPF)

 set to 2

24

Open Shortest Path First (OSPF)

 Five different OSPF messages

• For example, type = 1 is the “hello” message as
the heartbeat signal

24

Open Shortest Path First (OSPF)

SourceAddr: the sender of the message
Areald: the identifier of the area in which the node is located

24

Open Shortest Path First (OSPF)

Checksum: same as the IP checksum
Authentication:

• 0, no authentication

• 1, a simple password

• 2, a cryptographic authentication checksum
24

Open Shortest Path First (OSPF)

OSPF link-state advertisement

24

Open Shortest Path First (OSPF)

OSPF link-state advertisement

Link state packet (LSP)
• ID of the node that created the LSP

• Cost of link to each directly connect neighbor
• Sequence number (SEQ#)

• Time-to-live (TTL) for this packet

25

OSPF: Link State Packet

OSPF link-state advertisement

Link state packet (LSP)
• ID of the node that created the LSP

• Cost of link to each directly connect neighbor
• Sequence number (SEQ#)

• Time-to-live (TTL) for this packet

25

OSPF: Link State Packet

OSPF link-state advertisement

Link state packet (LSP)
• ID of the node that created the LSP

• Cost of link to each directly connect neighbor
• Sequence number (SEQ#)

• Time-to-live (TTL) for this packet

25

OSPF: Link State Packet

OSPF link-state advertisement

Link state packet (LSP)
• ID of the node that created the LSP

• Cost of link to each directly connect neighbor
• Sequence number (SEQ#)

• Time-to-live (TTL) for this packet

25

OSPF: Link State Packet

OSPF link-state advertisement

Link state packet (LSP)
• ID of the node that created the LSP

• Cost of link to each directly connect neighbor
• Sequence number (SEQ#)

• Time-to-live (TTL) for this packet

25

OSPF: Link State Packet

25

Link State v.s. Distance Vector

25

Link State v.s. Distance Vector

• Link state routing
• High messaging overhead
• Computing complexity

• Distance vector
• Slow convergence
• Race conditions

Assumption of distance vector:
• Each node knows the cost of the link to each of its directly connected neighbors

Assumption of link state:
• Each node can find out the state of the link to its neighbors and the cost of each link

26

Communication Cost: A Non-trivial Metric

27

Metrics for Link Cost

• #1: the number of hops

• #2: original ARPANET metric
• link cost == the number of packets enqueued on each link
• Take latency and bandwidth into consideration

27

Metrics for Link Cost

• #1: the number of hops

• #2: original ARPANET metric
• link cost == the number of packets enqueued on each link
• Take latency and bandwidth into consideration

This (#2) moves packets towards the shortest queue, not the destination!!

27

Metrics for Link Cost (Cont’d)

• #3: new ARPANET metric
• link cost == the average delay over some time period
• Sample each incoming packet with its arrival time (AT)
• Record the departure time (DT)
• When link-level ACK arrives, compute

• Delay = (DT - AT) + Transmit + Latency, where transmit and Latency are
static for the link

• If timeout, reset DT to the departure time for retransmission

Recap: The Router Architecture—Routing Processor

28

• Routing Processor:
• Execute the routing protocols
• Maintain routable tables and attached link state information
• Compute the forwarding table for the router

Recap: The Router Architecture—Routing Processor

28

• Routing Processor:
• Execute the routing protocols
• Maintain routable tables and attached link state information
• Compute the forwarding table for the router

There is where the link state routing or distance vector routing
algorithm runs!

Summary

• Today
• Link state routing

• Next lecture
• Software-Defined Networking

29

