TCP Connection
Management ()

Ming Liu
mgliu@cs.wisc.edu


https://pages.cs.wisc.edu/~mgliu/CS640/S25/index.html

Outline

| ast
* Transport Introduction

* Joday
* TCP Connection Management (l)

e Announcements
e | ab3 due on 04/01/2025 12:01PM
* Quiz3 in class on 04/03/2025



Transport Layer in the TCP/IP Model

Application layer Applications run as processes within a host
e — ' e~ T~ — 1
( Transport Ia@ - ‘

IP layer

[

|
|

Link layer Host-to-host communications between two endpoints |

Physical layer




What functionalities does the transport layer
provide?

Process-to-process communication channels

—_— —_— e — e i —— = L — RR—

Q1: How to set up the process-to-process channel?
Q2: How to multiplex concurrent channels over the physical link?
Q3: How to control the transmission rate?

Q4: How to achieve reliable delivery?

Q5: How to share the in-network bandwidth resources?




What functionalities does the transport layer
provide?

Process-to-process communication channels

E— — e e m— —— e e — e — — ___ e

e ———————— ——— — —
— e ——

\;Q'l How to set up the process _to- process channel’? - W

|

'Q2: How to multiplex concurrent channels over the physical link?
Q3: How to control the transmission rate? w
Q4: How to achieve reliable delivery?
Q5: How to share the in-network bandwidth resources?

\

— = — = = — p— — — e — . e —— SRR




Recap: UDP Issues

* #1: Arbitrary communication
» Senders and receivers can talk to each other in any ways



What is the goal of TCP connection
management?




What is the goal of TCP connection
management?

Dynamically create and destroy a full-duplex
communication channel between a sender
process and a receiver process for
reliable byte stream exchange




What is the goal of TCP connection
management?

Dynamically create and destroy a full-duplex
communication channel between a sender
process and a receiver process for
reliable byte stream exchange

On-demand communication



What is the goal of TCP connection
management?

Dynamically create and destroy a full-duplex
communication channel between a sender
process and a receiver process for
reliable byte stream exchange

On-demand communication Client <—> Server



What is the goal of TCP connection
management?

Dynamically create and destroy a full-duplex
communication channel between a sender
process and a receiver process for
reliable byte stream exchange

On-demand communication Client <—> Server



TCP Connection Establishment

* Let’s start with a naive approach



TCP Connection Establishment

* Let’s start with a naive approach

Server

My (client) byte stream starts
with a sequence number = X



TCP Connection Establishment

* Let’s start with a naive approach

My (client) byte stream starts

with a sequence number = X Got it, | acknowledge the sequence
number of your next byte is = X + 1



TCP Connection Establishment

* Let’s start with a naive approach

My (client) byte stream starts

with a sequence number = X Got it, | acknowledge the sequence
number of your next byte is = X + 1

My (server) byte stream starts
with a sequence number = Y



TCP Connection Establishment

» Let’s start with a naive approach

My (client) byte stream starts

with a sequence number = X Got it, | acknowledge the sequence

number of your next byte is = X + 1

My (server) byte stream starts
with a sequence number = Y
Got it, | acknowledge the
seqguence number of your
next byteis =Y + 1



TCP Connection Establishment

» Let’s start with a naive approach

My (client) byte stream starts

with a sequence number = X Got it, | acknowledge the sequence

number of your next byte is = X + 1

My (server) byte stream starts
with a sequence number = Y

Got it, | acknowledge the
sequence number of your

next byteis =Y + 1 . ]
mCouId we optimize a little bit? |

. N . e i —




TCP Connection Establishment

» Let’s start with a naive approach

My (client) byte stream starts

with a sequence number = X Got it, | acknowledge the sequence

number of your next byte is = X + 1

My (server) byte stream starts
with a sequence number = Y
Got it, | acknowledge the
seqguence number of your
next byteis =Y + 1



TCP Connection Establishment

» Let’s start with a naive approach

My (client) byte stream starts

with a sequence number = X Got it, | acknowledge the sequence

number of your next byte is = X + 1

My (server) byte stream starts
with a sequence number = Y
Got it, | acknowledge the
seguence number of your
next byteis =Y + 1



Three-Way Handshake



Three-Way Handshake

Active participant Passive participant

. A party wanting to SY . A party willing to
A party wanting t N, Sequencen party willing to
Initiate a connection um = x accept a connection
um =
yenceN
S\(N + ACKv Sed x4
nt=A"*
ACKnOW\edgeme
AC
K, ACknOWIedgement



Three-Way Handshake

Why not start with X = Y = 0 so that we can
eliminate the three-way handshake?

_ — - — e = — — ——
— g o

C
K, Acknowledgement =Y
= + 1



The Incarnation Issue

* The connection can be reused again
* A connection is defined by a <host, port> pair



The Incarnation Issue

* The connection can be reused again
* A connection is defined by a <host, port> pair

» Solution: initial sequence number is randomly generated



How can we implement this?

10



Client

State Machine (event/action)

Server

Passive open

11



State Machine Transition — Step

Client Server

Passive open

Active open/SYN

12



Client

State Machine Transition — Step 2

Server

Active open/SYN Closed

Passive open

LISTEN

SYN/SYN+ACK

13



State Machine Transition — Step 3

Client Server

Passive open

SYN/SYN+ACK

Active open/SYN

SYN+ACK/ACK

ESTABLISHED

ACK

ESTABLISHED

14



TCP Connection Establishment Summary

Closed S

YN, Sequ encen, Closed

m =X LISTEN
SYN SENT _N SYN RCVD
_ ACK sequenceNUT, -
S\(N - , X + 1
ledgement =
=STABLISHED|  AcknoW

ESTABLISHED

15



How can we destroy a TCP connection?



TCP Connection Teardown

* | et’s also start simple

Active participant Passive participant

17



TCP Connection Teardown

* | et’s also start simple

Active participant Passive participant

| have no more data to send.
My last sequence number = X

17



TCP Connection Teardown

* | et’s also start simple

Active participant Passive participant

| have no more data to send.

My last sequence number = X »

Got it, | acknowledge the sequence
number of your next byte is = X + 1

17



TCP Connection Teardown

* | et’s also start simple

Active participant

| have no more data to send.
My last sequence number = X

Passive participant

Got it, | acknowledge the sequence
number of your next byte is = X + 1

| also have no more data to send.
My last sequence number = Y

17



TCP Connection Teardown

* | et’s also start simple

Active participant Passive participant

| have no more data to send.

My last sequence number = X Got it, | acknowledge the sequence

number of your next byte is = X + 1

| also have no more data to send.
My last sequence number = Y
Got it, | acknowledge the
seqguence number of your
next byteis =Y + 1

17



TCP Connection Teardown

* 4-way handshake

Active participant Passive participant
|

17



TCP Connection Teardown

* 4-way handshake

Active participant Passive participant
|

- — _

‘ Could we do a 3-way handshake?

|

————————— —— — — = — — —




TCP State Machine Transition

Client Server

ESTABLISHED ESTABLISHED

18



TCP State Machine Transition — Step 1

Client Server

ESTABLISHED ESTABLISHED

Close/FIN

FIN_WAIT_"

19



TCP State Machine Transition — Step 1

Client Server

ESTABLISHED ESTABLISHED

FINJACK

CLOSE_WAIT

Close/FIN

FIN_WAIT_"

19



TCP State Machine Transition — Step 2

Client Server

ESTABLISHED ESTABLISHED

Close/FIN

FIN_WAIT_"

FIN_WAIT_2

FINJACK

CLOSE_WAIT

20



TCP State Machine Transition — Step 3

Client Server

ESTABLISHED ESTABLISHED

FINJACK

CLOSE_WAIT

Close/FIN

LAST_ACK

Close/FIN

FIN_WAIT_"

FIN_WAIT_2

21



TCP State Machine Transition — Step 3

Client Server

ESTABLISHED ESTABLISHED

Close/FIN
FIN/JACK

FIN_WAIT_T CLOSE WAIT

FIN_WAIT_2 Close/FIN
LAST_ACK

FIN/JACK TIME_WAIT

21



TCP State Machine Transition — Step 4

Client Server

ESTABLISHED ESTABLISHED

Close/FIN
FIN/JACK

FIN_WAIT_T CLOSE WAIT

FIN_WAIT_2 Close/FIN
LAST_ACK

ACK

FIN/JACK TIME_WAIT

CLOSED

22



TCP State Machine Transition — Step 4

Client

ESTABLISHED

Close/FIN

FIN_WAIT_"

FIN_WAIT_2

FINJACK

CLOSED

TIME_WAIT

Timeout after two
segment lifetimes

Server
FIN/JACK
Close/FIN
ACK

CLOSED

22



TCP State Machine Transition — Step 4

Client Server
+ Maximum segment lifetime = 60s \
) . L. |
/proc/sys/net/ipv4/tcp_fin_timeout CWAIT

int sfd = socket(domain, socktype, 0);

int optval = 1;
setsockopt(sfd, SOL_SOCKET, SO_REUSEPORT, &optval, sizeof(optval)); I

bind(sfd, (struct sockaddr %) &addr, addrlen); )

Timeout after two ACK

segment lifetimes

22



TCP Connection Termination Summary

Active participant Passive participant

ESTABLISHED

F
IN, Sequencey, _ Ny ESTABLISHED
FIN_WAIT_1
CLOSE_WAIT
LAST_ACK
FIN_WAIT_2
TIME_WAIT

CLOSED CLOSED

23



TCP Connection Termination Summary

Active participant Passive participant
ESTABLISHED

———— i — — —— —

| ESTABLISHED _

x

connection simultaneously?

R _ —_— _ S — — — p— e — — — — — — p— = E— _ I — ———

TIME_WAIT Acknowledgeme ;
Nt =

Y+1
CLOSED CLOSED

But, how do we know both sides plan to close the

23



TCP Connection Termination Summary

Active participant Passive participant
ESTABLISHED

ESTABLISHED _

S —

TCP connection termination has more scenarios to

handle (discuss in the next lecture)!

__ — - — - E— — — — e — — —— — — — _ _ __ _ _ —

TIME_WAIT ACk”OWIe dgement v
- _,_1

CLOSED CLOSED

23



Revisit the TCP Header

0 4 10 16 31
SrcPort DstPort

.

g SequenceNum |

(LAckﬁEvledgmght

HdrLen 0 ~ Flags ) AdvertisedWindow

=_— . . ____ — — S ——— ———

SYN/FIN -> TCP connection establishment and teardown
ACK -> Acknowledgement is valid

URG -> The segment contains urgent data. UrgPtr will be setup
PUSH -> Notify the receiving process

RESET -> The receiving side gets confused information




Revisit the TCP Header

0 4 10 16

SrcPort DstPort

LL SequenceNum |

Acknowledgment

HdrLen| O Flags AdvertisedW

Checksum

o [f SYN flag is set, this is the initial sequence

e =—___- — = —

number. The start of a byte stream;

 If SYN flag is clear, this is the accumulated

sequence number of the first data byte of this

segment for the current session;

Options (variable)

Data

L T
— N

24



Revisit the TCP Header

0 4 10 16

31

SrcPort

DstPort

SequenceNum

. Acknowledgment |

HdrLen 0

Flags AdvertisedW

Checksum

UrgPtr

Options (variable)

\/\/\/\/\/\/\/
T N\

Data |

—_— B e o

. If ACK flag is set, the value of this field is the |
next sequence number that the sender of the
ACK is expecting. This acknowledges receipt
of all prior bytes (if any)

» The first ACK sent by each end acknowledges
the other ends’s initial sequence number itself,|
but no data

o e =

24



Summary

* Joday

* TCP connection management (I)

* Next lecture
* TCP connection management (ll)

25



