TCP Connection
Management ()

Ming Liu
mgliu@cs.wisc.edu


https://pages.cs.wisc.edu/~mgliu/CS640/S25/index.html

Outline

| ast
* Transport Introduction

* Joday
* TCP Connection Management (l)

e Announcements
e | ab3 due on 04/01/2025 12:01PM
* Quiz3 in class on 04/03/2025



Transport Layer in the TCP/IP Model

Application layer Applications run as processes within a host
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Link layer Host-to-host communications between two endpoints |

Physical layer




What functionalities does the transport layer
provide?

Process-to-process communication channels
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Q1: How to set up the process-to-process channel?
Q2: How to multiplex concurrent channels over the physical link?
Q3: How to control the transmission rate?

Q4: How to achieve reliable delivery?

Q5: How to share the in-network bandwidth resources?
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Recap: UDP Issues

* #1: Arbitrary communication
» Senders and receivers can talk to each other in any ways



What is the goal of TCP connection
management?
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Three-Way Handshake

Active participant Passive participant

. A party wanting to SY . A party willing to
A party wanting t N, Sequencen party willing to
Initiate a connection um = x accept a connection
um =
yenceN
S\(N + ACKv Sed x4
nt=A"*
ACKnOW\edgeme
AC
K, ACknOWIedgement



Three-Way Handshake

Why not start with X = Y = 0 so that we can
eliminate the three-way handshake?
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C
K, Acknowledgement =Y
= + 1



The Incarnation Issue

* The connection can be reused again
* A connection is defined by a <host, port> pair



The Incarnation Issue

* The connection can be reused again
* A connection is defined by a <host, port> pair

» Solution: initial sequence number is randomly generated



How can we implement this?
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Client

State Machine (event/action)

Server

Passive open
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State Machine Transition — Step

Client Server

Passive open

Active open/SYN
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Client

State Machine Transition — Step 2

Server

Active open/SYN Closed

Passive open

LISTEN

SYN/SYN+ACK
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State Machine Transition — Step 3

Client Server

Passive open

SYN/SYN+ACK

Active open/SYN

SYN+ACK/ACK

ESTABLISHED

ACK

ESTABLISHED
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TCP Connection Establishment Summary

Closed S

YN, Sequ encen, Closed

m =X LISTEN
SYN SENT _N SYN RCVD
_ ACK sequenceNUT, -
S\(N - , X + 1
ledgement =
=STABLISHED|  AcknoW

ESTABLISHED
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How can we destroy a TCP connection?



TCP Connection Teardown
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TCP Connection Teardown

* 4-way handshake

Active participant Passive participant
|
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TCP Connection Teardown

* 4-way handshake

Active participant Passive participant
|

- — _

‘ Could we do a 3-way handshake?

|
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TCP State Machine Transition

Client Server

ESTABLISHED ESTABLISHED
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TCP State Machine Transition — Step 1

Client Server

ESTABLISHED ESTABLISHED

Close/FIN

FIN_WAIT_"
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TCP State Machine Transition — Step 1

Client Server

ESTABLISHED ESTABLISHED

FINJACK

CLOSE_WAIT

Close/FIN

FIN_WAIT_"
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TCP State Machine Transition — Step 2

Client Server

ESTABLISHED ESTABLISHED

Close/FIN

FIN_WAIT_"

FIN_WAIT_2

FINJACK

CLOSE_WAIT
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TCP State Machine Transition — Step 3

Client Server

ESTABLISHED ESTABLISHED

FINJACK

CLOSE_WAIT

Close/FIN

LAST_ACK

Close/FIN

FIN_WAIT_"

FIN_WAIT_2
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TCP State Machine Transition — Step 3

Client Server

ESTABLISHED ESTABLISHED

Close/FIN
FIN/JACK

FIN_WAIT_T CLOSE WAIT

FIN_WAIT_2 Close/FIN
LAST_ACK

FIN/JACK TIME_WAIT
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TCP State Machine Transition — Step 4

Client Server

ESTABLISHED ESTABLISHED

Close/FIN
FIN/JACK

FIN_WAIT_T CLOSE WAIT

FIN_WAIT_2 Close/FIN
LAST_ACK

ACK

FIN/JACK TIME_WAIT

CLOSED

22



TCP State Machine Transition — Step 4

Client

ESTABLISHED

Close/FIN

FIN_WAIT_"

FIN_WAIT_2

FINJACK

CLOSED

TIME_WAIT

Timeout after two
segment lifetimes

Server
FIN/JACK
Close/FIN
ACK

CLOSED
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TCP State Machine Transition — Step 4

Client Server
+ Maximum segment lifetime = 60s \
) . L. |
/proc/sys/net/ipv4/tcp_fin_timeout CWAIT

int sfd = socket(domain, socktype, 0);

int optval = 1;
setsockopt(sfd, SOL_SOCKET, SO_REUSEPORT, &optval, sizeof(optval)); I

bind(sfd, (struct sockaddr %) &addr, addrlen); )

Timeout after two ACK

segment lifetimes
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TCP Connection Termination Summary

Active participant Passive participant

ESTABLISHED

F
IN, Sequencey, _ Ny ESTABLISHED
FIN_WAIT_1
CLOSE_WAIT
LAST_ACK
FIN_WAIT_2
TIME_WAIT

CLOSED CLOSED
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TCP Connection Termination Summary

Active participant Passive participant
ESTABLISHED

———— i — — —— —

| ESTABLISHED _

x

connection simultaneously?
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TIME_WAIT Acknowledgeme ;
Nt =

Y+1
CLOSED CLOSED

But, how do we know both sides plan to close the
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TCP Connection Termination Summary

Active participant Passive participant
ESTABLISHED

ESTABLISHED _

S —

TCP connection termination has more scenarios to

handle (discuss in the next lecture)!
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TIME_WAIT ACk”OWIe dgement v
- _,_1

CLOSED CLOSED
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Revisit the TCP Header

0 4 10 16 31
SrcPort DstPort

.

g SequenceNum |

(LAckﬁEvledgmght

HdrLen 0 ~ Flags ) AdvertisedWindow

=_— . . ____ — — S ——— ———

SYN/FIN -> TCP connection establishment and teardown
ACK -> Acknowledgement is valid

URG -> The segment contains urgent data. UrgPtr will be setup
PUSH -> Notify the receiving process

RESET -> The receiving side gets confused information




Revisit the TCP Header

0 4 10 16

SrcPort DstPort

LL SequenceNum |

Acknowledgment

HdrLen| O Flags AdvertisedW

Checksum

o [f SYN flag is set, this is the initial sequence

e =—___- — = —

number. The start of a byte stream;

 If SYN flag is clear, this is the accumulated

sequence number of the first data byte of this

segment for the current session;

Options (variable)

Data

L T
— N

24



Revisit the TCP Header

0 4 10 16

31

SrcPort

DstPort

SequenceNum

. Acknowledgment |

HdrLen 0

Flags AdvertisedW

Checksum

UrgPtr

Options (variable)

\/\/\/\/\/\/\/
T N\

Data |
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. If ACK flag is set, the value of this field is the |
next sequence number that the sender of the
ACK is expecting. This acknowledges receipt
of all prior bytes (if any)

» The first ACK sent by each end acknowledges
the other ends’s initial sequence number itself,|
but no data

o e =
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Summary

* Joday

* TCP connection management (I)

* Next lecture
* TCP connection management (ll)
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