
Ming Liu
mgliu@cs.wisc.edu

Introduction to Computer Networks

CS640
https://pages.cs.wisc.edu/~mgliu/CS640/S25/index.html

TCP Connection
Management (I)

1

https://pages.cs.wisc.edu/~mgliu/CS640/S25/index.html

Outline

2

• Today
• TCP Connection Management (I)

• Announcements
• Lab3 due on 04/01/2025 12:01PM
• Quiz3 in class on 04/03/2025

• Last
• Transport Introduction

Physical layer

Link layer

IP layer

Transport layer

Application layer

Host-to-host communications between two endpoints

Applications run as processes within a host

Transport Layer in the TCP/IP Model

3

What functionalities does the transport layer
provide?

Process-to-process communication channels

Q1: How to set up the process-to-process channel?
Q2: How to multiplex concurrent channels over the physical link?
Q3: How to control the transmission rate?
Q4: How to achieve reliable delivery?
Q5: How to share the in-network bandwidth resources?

4

What functionalities does the transport layer
provide?

Process-to-process communication channels

Q1: How to set up the process-to-process channel?
Q2: How to multiplex concurrent channels over the physical link?
Q3: How to control the transmission rate?
Q4: How to achieve reliable delivery?
Q5: How to share the in-network bandwidth resources?

4

5

Recap: UDP Issues

• #1: Arbitrary communication
• Senders and receivers can talk to each other in any ways

• #2: No reliability guarantee
• Packets can be lost/duplicated/reordered during transmission
• A checksum is not enough

• #3: No resource management
• Each channel works as an exclusive network resource owner
• No adaptive support for the physical networks and applications

What is the goal of TCP connection
management?

6

What is the goal of TCP connection
management?

Dynamically create and destroy a full-duplex
communication channel between a sender

process and a receiver process for
reliable byte stream exchange

6

On-demand communication

What is the goal of TCP connection
management?

Dynamically create and destroy a full-duplex
communication channel between a sender

process and a receiver process for
reliable byte stream exchange

6

On-demand communication

What is the goal of TCP connection
management?

Dynamically create and destroy a full-duplex
communication channel between a sender

process and a receiver process for
reliable byte stream exchange

Client <—> Server

6

On-demand communication

What is the goal of TCP connection
management?

Dynamically create and destroy a full-duplex
communication channel between a sender

process and a receiver process for
reliable byte stream exchange

Client <—> Server

Client and server agree on the start of
byte steams for two directions

6

Client Server

TCP Connection Establishment

• Let’s start with a naive approach

7

Client Server

My (client) byte stream starts
with a sequence number = X

TCP Connection Establishment

• Let’s start with a naive approach

7

Client Server

Got it, I acknowledge the sequence
number of your next byte is = X + 1

My (client) byte stream starts
with a sequence number = X

TCP Connection Establishment

• Let’s start with a naive approach

7

My (client) byte stream starts
with a sequence number = X

Client Server

Got it, I acknowledge the sequence
number of your next byte is = X + 1

My (server) byte stream starts
with a sequence number = Y

TCP Connection Establishment

• Let’s start with a naive approach

7

My (client) byte stream starts
with a sequence number = X

Client Server

Got it, I acknowledge the sequence
number of your next byte is = X + 1

My (server) byte stream starts
with a sequence number = Y

Got it, I acknowledge the
sequence number of your

next byte is = Y + 1

TCP Connection Establishment

• Let’s start with a naive approach

7

My (client) byte stream starts
with a sequence number = X

Client Server

Got it, I acknowledge the sequence
number of your next byte is = X + 1

My (server) byte stream starts
with a sequence number = Y

Got it, I acknowledge the
sequence number of your

next byte is = Y + 1
Could we optimize a little bit?

TCP Connection Establishment

• Let’s start with a naive approach

7

My (client) byte stream starts
with a sequence number = X

Client Server

Got it, I acknowledge the sequence
number of your next byte is = X + 1

My (server) byte stream starts
with a sequence number = Y

Got it, I acknowledge the
sequence number of your

next byte is = Y + 1

TCP Connection Establishment

• Let’s start with a naive approach

7

My (client) byte stream starts
with a sequence number = X

Client Server

Got it, I acknowledge the sequence
number of your next byte is = X + 1

My (server) byte stream starts
with a sequence number = Y

Got it, I acknowledge the
sequence number of your

next byte is = Y + 1

TCP Connection Establishment

• Let’s start with a naive approach

7

SYN, SequenceNum = X

Client Server

SYN + ACK, SequenceNum = Y

Acknowledgement = X + 1

ACK, Acknowledgement = Y + 1

Three-Way Handshake

8

SYN, SequenceNum = X

Client Server

SYN + ACK, SequenceNum = Y

Acknowledgement = X + 1

ACK, Acknowledgement = Y + 1

Active participant
• A party wanting to
initiate a connection

Passive participant
• A party willing to
accept a connection

Three-Way Handshake

8

SYN, SequenceNum = X

Client Server

SYN + ACK, SequenceNum = Y

Acknowledgement = X + 1

ACK, Acknowledgement = Y + 1

Why not start with X = Y = 0 so that we can
eliminate the three-way handshake?

Three-Way Handshake

8

The Incarnation Issue

9

• The connection can be reused again
• A connection is defined by a <host, port> pair

The Incarnation Issue

9

• The connection can be reused again
• A connection is defined by a <host, port> pair

• Solution: initial sequence number is randomly generated

SYN, SequenceNum = X

Client Server

SYN + ACK, SequenceNum = Y

Acknowledgement = X + 1

ACK, Acknowledgement = Y + 1

How can we implement this?

10

Closed

Client

Closed

Server

LISTEN

Passive open

State Machine (event/action)

11

Closed

Client

Closed

Server

SYN_SENT

Active open/SYN

LISTEN

Passive open

State Machine Transition — Step 1

12

Closed

Client

Closed

Server

SYN_SENT

Active open/SYN

LISTEN

Passive open

SYN_RCVD

SYN/SYN+ACK

State Machine Transition — Step 2

13

Closed

Client

Closed

Server

SYN_SENT

Active open/SYN

LISTEN

Passive open

SYN_RCVD

SYN/SYN+ACK

ESTABLISHED

SYN+ACK/ACK

ESTABLISHED

ACK

State Machine Transition — Step 3

14

SYN, SequenceNum = X

Client Receiver

SYN + ACK, SequenceNum = Y

Acknowledgement = X + 1

ACK, Acknowledgement = Y + 1

Closed Closed

SYN_SENT SYN_RCVD

ESTABLISHED

LISTEN

ESTABLISHED

15

TCP Connection Establishment Summary

How can we destroy a TCP connection?

16

Active participant Passive participant

TCP Connection Teardown

• Let’s also start simple

17

I have no more data to send.
My last sequence number = X

Active participant Passive participant

TCP Connection Teardown

• Let’s also start simple

17

I have no more data to send.
My last sequence number = X

Active participant Passive participant

Got it, I acknowledge the sequence
number of your next byte is = X + 1

TCP Connection Teardown

• Let’s also start simple

17

I have no more data to send.
My last sequence number = X

Active participant Passive participant

Got it, I acknowledge the sequence
number of your next byte is = X + 1

I also have no more data to send.
My last sequence number = Y

TCP Connection Teardown

• Let’s also start simple

17

I have no more data to send.
My last sequence number = X

Active participant Passive participant

Got it, I acknowledge the sequence
number of your next byte is = X + 1

I also have no more data to send.
My last sequence number = Y

Got it, I acknowledge the
sequence number of your

next byte is = Y + 1

TCP Connection Teardown

• Let’s also start simple

17

Active participant Passive participant

FIN, SequenceNum = X

Acknowledgement = X+1

FIN, SequenceNum = Y

Acknowledgement = Y+1

TCP Connection Teardown

• 4-way handshake

17

Active participant Passive participant

Could we do a 3-way handshake?

FIN, SequenceNum = X

Acknowledgement = X+1

FIN, SequenceNum = Y

Acknowledgement = Y+1

TCP Connection Teardown

• 4-way handshake

17

Client Server

ESTABLISHED ESTABLISHED

TCP State Machine Transition

18

Client Server

ESTABLISHEDESTABLISHED

FIN_WAIT_1

Close/FIN

TCP State Machine Transition — Step 1

19

Client Server

ESTABLISHED

CLOSE_WAIT

FIN/ACK

ESTABLISHED

FIN_WAIT_1

Close/FIN

TCP State Machine Transition — Step 1

19

Client Server

ESTABLISHED

CLOSE_WAIT

FIN/ACK

ESTABLISHED

FIN_WAIT_1

Close/FIN

FIN_WAIT_2
ACK

TCP State Machine Transition — Step 2

20

Client Server

ESTABLISHED

CLOSE_WAIT

FIN/ACK

LAST_ACK

Close/FIN

ESTABLISHED

FIN_WAIT_1

Close/FIN

FIN_WAIT_2
ACK

TCP State Machine Transition — Step 3

21

Client Server

ESTABLISHED

CLOSE_WAIT

FIN/ACK

LAST_ACK

Close/FIN

ESTABLISHED

FIN_WAIT_1

Close/FIN

FIN_WAIT_2
ACK

TIME_WAITFIN/ACK

TCP State Machine Transition — Step 3

21

Client Server

ESTABLISHED

CLOSE_WAIT

FIN/ACK

CLOSED

LAST_ACK

Close/FIN

ACK

ESTABLISHED

FIN_WAIT_1

Close/FIN

FIN_WAIT_2
ACK

TIME_WAITFIN/ACK

TCP State Machine Transition — Step 4

22

Client Server

ESTABLISHED

CLOSE_WAIT

FIN/ACK

ESTABLISHED

FIN_WAIT_1

Close/FIN

FIN_WAIT_2
ACK

TIME_WAIT

CLOSED

LAST_ACK

Close/FIN

ACKCLOSED Timeout after two
segment lifetimes

FIN/ACK

TCP State Machine Transition — Step 4

22

Client Server

ESTABLISHED

CLOSE_WAIT

FIN/ACK

ESTABLISHED

FIN_WAIT_1

Close/FIN

FIN_WAIT_2
ACK

TIME_WAIT

CLOSED

LAST_ACK

Close/FIN

ACKCLOSED Timeout after two
segment lifetimes

FIN/ACK

• Maximum segment lifetime = 60s

• /proc/sys/net/ipv4/tcp_fin_timeout

TCP State Machine Transition — Step 4

22

Active participant Passive participant

FIN, SequenceNum = X

Acknowledgement = X+1

FIN, SequenceNum = Y

Acknowledgement = Y+1

ESTABLISHED ESTABLISHED

FIN_WAIT_1
CLOSE_WAIT
LAST_ACK

CLOSED

FIN_WAIT_2

TIME_WAIT

CLOSED

TCP Connection Termination Summary

23

Active participant Passive participant

FIN, SequenceNum = X

Acknowledgement = X+1

FIN, SequenceNum = Y

Acknowledgement = Y+1

ESTABLISHED ESTABLISHED

FIN_WAIT_1
CLOSE_WAIT
LAST_ACK

CLOSED

FIN_WAIT_2

TIME_WAIT

CLOSED

TCP Connection Termination Summary

23

But, how do we know both sides plan to close the
connection simultaneously?

Active participant Passive participant

FIN, SequenceNum = X

Acknowledgement = X+1

FIN, SequenceNum = Y

Acknowledgement = Y+1

ESTABLISHED ESTABLISHED

FIN_WAIT_1
CLOSE_WAIT
LAST_ACK

CLOSED

FIN_WAIT_2

TIME_WAIT

CLOSED

TCP Connection Termination Summary

23

TCP connection termination has more scenarios to
handle (discuss in the next lecture)!

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

• SYN/FIN —> TCP connection establishment and teardown

• ACK -> Acknowledgement is valid

• URG —> The segment contains urgent data. UrgPtr will be setup

• PUSH -> Notify the receiving process

• RESET -> The receiving side gets confused information

Revisit the TCP Header

24

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

• If SYN flag is set, this is the initial sequence
number. The start of a byte stream;

• If SYN flag is clear, this is the accumulated
sequence number of the first data byte of this
segment for the current session;

Revisit the TCP Header

24

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

• If ACK flag is set, the value of this field is the
next sequence number that the sender of the
ACK is expecting. This acknowledges receipt
of all prior bytes (if any)

• The first ACK sent by each end acknowledges
the other ends’s initial sequence number itself,
but no data

Revisit the TCP Header

24

Summary

• Today
• TCP connection management (I)

• Next lecture
• TCP connection management (II)

25

