
Ming Liu
mgliu@cs.wisc.edu

Introduction to Computer Networks

CS640
https://pages.cs.wisc.edu/~mgliu/CS640/S25/index.html

TCP Connection
Management (II)

1

https://pages.cs.wisc.edu/~mgliu/CS640/S25/index.html

Outline

2

• Today
• TCP Connection Management (II)

• Announcements
• Lab3 due on 04/01/2025 04/03/2025 12:01PM
• Quiz3 in class on 04/03/2025

• Last
• TCP Connection Management (I)

3

Recap: UDP Issues

• #1: Arbitrary communication
• Senders and receivers can talk to each other in any ways

• #2: No reliability guarantee
• Packets can be lost/duplicated/reordered during transmission
• A checksum is not enough

• #3: No resource management
• Each channel works as an exclusive network resource owner
• No adaptive support for the physical networks and applications

What is the goal of TCP connection
management?

4

What is the goal of TCP connection
management?

Dynamically create and destroy a full-duplex
communication channel between a sender

process and a receiver process for
reliable byte stream exchange

4

On-demand communication

What is the goal of TCP connection
management?

Dynamically create and destroy a full-duplex
communication channel between a sender

process and a receiver process for
reliable byte stream exchange

4

On-demand communication

What is the goal of TCP connection
management?

Dynamically create and destroy a full-duplex
communication channel between a sender

process and a receiver process for
reliable byte stream exchange

Client <—> Server

4

On-demand communication

What is the goal of TCP connection
management?

Dynamically create and destroy a full-duplex
communication channel between a sender

process and a receiver process for
reliable byte stream exchange

Client <—> Server

Client and server agree on the start of
byte steams for two directions

4

SYN, SequenceNum = X

Client Server

SYN + ACK, SequenceNum = Y

Acknowledgement = X + 1

ACK, Acknowledgement = Y + 1

Active participant
• A party wanting to
initiate a connection

Passive participant
• A party willing to
accept a connection

Three-Way Handshake

5

Closed

Client

Closed

Server

SYN_SENT

Active open/SYN

LISTEN

Passive open

SYN_RCVD

SYN/SYN+ACK

ESTABLISHED

SYN+ACK/ACK

ESTABLISHED

ACK

State Machine Transition

6

SYN, SequenceNum = X

Client Receiver

SYN + ACK, SequenceNum = Y

Acknowledgement = X + 1

ACK, Acknowledgement = Y + 1

Closed Closed

SYN_SENT SYN_RCVD

ESTABLISHED

LISTEN

ESTABLISHED

7

TCP Connection Establishment

TCP State Transition Diagram

8

TCP State Transition Diagram

8

Active participant Passive participant

FIN, SequenceNum = X

Acknowledgement = X+1

FIN, SequenceNum = Y

Acknowledgement = Y+1

TCP Connection Teardown

• Case 1: 4-way handshake

9

Client Server

ESTABLISHED

CLOSE_WAIT

FIN/ACK

ESTABLISHED

FIN_WAIT_1

Close/FIN

FIN_WAIT_2
ACK

TIME_WAIT

CLOSED

LAST_ACK

Close/FIN

ACKCLOSED Timeout after two
segment lifetimes

FIN/ACK

TCP State Machine Transition

10

Active participant Passive participant

FIN, SequenceNum = X

Acknowledgement = X+1

FIN, SequenceNum = Y

Acknowledgement = Y+1

ESTABLISHED ESTABLISHED

FIN_WAIT_1
CLOSE_WAIT
LAST_ACK

CLOSED

FIN_WAIT_2

TIME_WAIT

CLOSED

TCP Connection Termination (Case 1)

11

Active participant Passive participant

FIN, SequenceNum = X

Acknowledgement = X+1

FIN, SequenceNum = Y

Acknowledgement = Y+1

ESTABLISHED ESTABLISHED

FIN_WAIT_1
CLOSE_WAIT
LAST_ACK

CLOSED

FIN_WAIT_2

TIME_WAIT

CLOSED

TCP Connection Termination (Case 1)

11

But, how do we know both sides plan to close the connection
simultaneously?

I have no more data to send.
My last sequence number = X

Active participant Passive participant

I also have no more data to send. My
last sequence number = Y

Got it, I acknowledge the
sequence number of your

next byte is = Y+ 1

Got it, I acknowledge the
sequence number of your

next byte is = X + 1

Case 2: Both Slides Close Simultaneously

12

Active participant Passive participant
FIN, SequenceNum = X

FIN, SequenceNum = Y

Acknowledgement = X + 1

Acknowledgement = Y+1

Case 2: Both Slides Close Simultaneously

12

Client Server

ESTABLISHED ESTABLISHED

13

Case 2: State Machine Transition (Step 1)

Client Server

ESTABLISHED

FIN_WAIT_1

Close/FIN ESTABLISHED

FIN_WAIT_1

Close/FIN

13

Case 2: State Machine Transition (Step 1)

Client Server

ESTABLISHED

FIN_WAIT_1

Close/FIN

CLOSING FIN/ACK

ESTABLISHED

FIN_WAIT_1

Close/FIN

CLOSING FIN/ACK

14

Case 2: State Machine Transition (Step 2)

Client Server

ESTABLISHED

FIN_WAIT_1

Close/FIN

CLOSING FIN/ACK

TIME_WAIT
ACK

ESTABLISHED

FIN_WAIT_1

Close/FIN

CLOSING FIN/ACK

TIME_WAIT
ACK

15

Case 2: State Machine Transition (Step 3)

Client Server

ESTABLISHED

FIN_WAIT_1

Close/FIN

CLOSING FIN/ACK

TIME_WAIT
ACK

CLOSED Timeout after two
segment lifetimes

ESTABLISHED

FIN_WAIT_1

Close/FIN

CLOSING FIN/ACK

TIME_WAIT
ACK

CLOSED Timeout after two
segment lifetimes

16

Case 2: State Machine Transition (Step 4)

Active participant Passive participant

FIN, SequenceNum = X

FIN, SequenceNum = Y

Acknowledgement = X + 1

Acknowledgement = Y+1

ESTABLISHED

FIN_WAIT_1

CLOSING

CLOSED

ESTABLISHED

FIN_WAIT_1

CLOSING

CLOSED

TCP Connection Termination (Case 2) Summary

17

I have no more data to send.
My last sequence number = X

Active participant Passive participant

I also have no more data to send. My
last sequence number = Y

Got it, I acknowledge the
sequence number of your

next byte is = Y+ 1

Got it, I acknowledge the
sequence number of your

next byte is = X + 1

Case 3: Both Sides Close Simultaneously, but

18

I have no more data to send.
My last sequence number = X

Active participant Passive participant

I also have no more data to send. I
acknowledge the sequence number
of your next byte is = X + 1. And my

last sequence number = YGot it, I acknowledge the
sequence number of your

next byte is = Y+ 1

18

Case 3: Message Order Changes

Active participant Passive participant
FIN, SequenceNum = X

FIN, SequenceNum = Y

Acknowledgement = X + 1

Acknowledgement = Y+1

19

TCP Connection Termination (Case 3)

Client Server

ESTABLISHED ESTABLISHED

20

Case 3: State Machine Transition (Step 1)

Client Server

ESTABLISHED

FIN_WAIT_1

Close/FIN ESTABLISHED

FIN_WAIT_1

Close/FIN

CLOSING FIN/ACK

20

Case 3: State Machine Transition (Step 1)

Client Server

ESTABLISHED

FIN_WAIT_1

Close/FIN

ACK+FIN/ACK

TIME_WAIT

ESTABLISHED

FIN_WAIT_1

Close/FIN

CLOSING FIN/ACK

TIME_WAIT
ACK

21

Case 3: State Machine Transition (Step 2)

Client Server

ESTABLISHED

FIN_WAIT_1

Close/FIN

ACK+FIN/ACK

TIME_WAIT

CLOSED Timeout after two
segment lifetimes

ESTABLISHED

FIN_WAIT_1

Close/FIN

CLOSING FIN/ACK

TIME_WAIT
ACK

CLOSED Timeout after two
segment lifetimes

22

Case 3: State Machine Transition (Step 3)

Active participant Passive participant

FIN, SequenceNum = X

FIN, SequenceNum = Y

Acknowledgement = X + 1

Acknowledgement = Y+1

ESTABLISHED

TIME_WAIT

CLOSED

ESTABLISHED

FIN_WAIT_1

CLOSING

FIN_WAIT_1

CLOSED

23

TCP Connection Termination (Case 3) Summary

TCP State Transition Diagram

24

TCP Connection Management Summary

25

• #1: Connection setup is asymmetric
• One side does a passive open and the other side does an active open

• #2: Connection teardown is symmetric
• Each side has to close the connection independently

TCP Connection Management Summary

25

• #1: Connection setup is asymmetric
• One side does a passive open and the other side does an active open

• #2: Connection teardown is symmetric
• Each side has to close the connection independently

• #3: Most states schedule a timeout
• Timeouts are triggered when the expected responses does not happen

TCP Connection Management Summary

25

• #1: Connection setup is asymmetric
• One side does a passive open and the other side does an active open

• #2: Connection teardown is symmetric
• Each side has to close the connection independently

• #3: Most states schedule a timeout
• Timeouts are triggered when the expected responses does not happen

TCP(UDP) Connection = Flow

• The network processing granularity in the transport layer
• Five tuples = (src IP, dst IP, protocol number, src port, dst port)

26

How does TCP solve the first issue?

• #1: Arbitrary communication
• Senders and receivers can talk to each other in any ways

• #2: No reliability guarantee
• Packets can be lost/duplicated/reordered during transmission
• A checksum is not enough

• #3: No resource management
• Each channel works as an exclusive network resource owner
• No adaptive support for the physical networks and applications

TCP avoids arbitrary communication but exposes
non-negligible attacking interfaces.

27

SYN Flood Attack

28

• Expected behavior: The TCP connection establishment phase starts with a
standardized three-way handshake. The client sends an SYN packet. The
server responds with an SYN-ACK.

SYN Flood Attack

• Expected behavior: The TCP connection establishment phase starts with a
standardized three-way handshake. The client sends an SYN packet. The
server responds with an SYN-ACK.

28

SYN Flood Attack

28

• Expected behavior: The TCP connection establishment phase starts with a
standardized three-way handshake. The client sends an SYN packet. The
server responds with an SYN-ACK.

• Abnormal behavior: An attacker sends an overwhelming number of SYN
requests and intentionally never responds to the server’s SYN-ACK
messages.

Summary

• Today
• TCP connection management (II)

• Next lecture
• TCP reliability support (I)

29

