Introduction to Computer Networks

Computer Networks: a **HW/SW Perspective**

https://pages.cs.wisc.edu/~mgliu/CS640/S25/index.html

Ming Liu mgliu@cs.wisc.edu

Outline

- Last lecture
 - Course logistics
 - Computer network basics
 - Computer network design requirements
- Today
 - Computer networks: hardware infrastructure
 - Computer networks: software system
- Announcements
 - Lab1 will be released next week

Networking Hardware @Host

 A host is a device that connects to the network A communication link is a physical media that carries data

What are communication links exactly?

DSL @Home Network

- Digital subscriber line (DSL)
 - Local telephone company (telco) => Internet service provide (ISP)
- Digital subscriber line access multiplexer (DSLAM)
 - Locate at the cental office
 - Convert between digital data and analog signals

	🖌 FAN	(Ĵ		
			0000		9
a na an			0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		
				••• ••• ••• •••	
- 7		***		* * * * *	•
		i i î			
ă-					
				7 7 7 7 7 7	_
					l
		888			
e' 🖳	a contra	A CONTRACTOR	Citeria di	A COMPANY	0

DSL @Home Network

- Digital subscriber line (DSL)
 - Local telephone company (telco) => Internet service provide (ISP)
- Digital subscriber line access multiplexer (DSLAM)
 - Locate at the cental office
 - Convert between digital data and analog signals

Frequency-Division Multiplexing

- A splitter separates the signal
 - High-speed downstream channel: 50 kHz to 1MHz
 - Medium-speed upstream channel: 4 kHz to 50 kHz
 - Two-way telephone channel: 0 to 4 kHz
- Transmission rate
 - Mbps = Megabits per second
 - Downstream: 24Mbps and 52 Mbps
- Factors that affect the transmission rate
 - Distance, the degree of electrical interference, etc.

Cable @Home Network

- Coaxial cable
 - Television company => Internet service provide (ISP)
- Hybrid fiber coax (HFC)
 - A neighborhood junction supports 500-5000 homes
 - CMTS = Cable Modem Termination System

Cable @Home Network

- Coaxial cable
 - Television company => Internet service provide (ISP)
- Hybrid fiber coax (HFC)
 - A neighborhood junction supports 500-5000 homes
 - CMTS = Cable Modem Termination System

Again, how can we multiplex TV and network signals?

Cable Signal Multiplexing

- Frequency-Division Multiplexing
 - TV: 54MHz to 500 MHz
 - Network: 54MHz to 1GHz
 - Provision the channel with the frequency band
- Cable network has higher transmission rate than DSL Downstream: 40 Mbps to 1.2 Gbps
- - Upstream: 30 Mbps to 100 Mbps
- Factors that affect the transmission rate
 - Media impairments, etc.

Cable: Shared Broadcast Medium

- Every packet from CMTS traverses every downlink

Every packet from home traverses every uplink to CMTS

Cable: Shared Broadcast Medium

- Every packet from CMTS traverses every downlink
- Every packet from home traverses every uplink to CMTS

What is the downside?

verses every downlink verses every uplink to CMTS

Cable: Shared Broadcast Medium

- Every packet from CMTS traverses every downlink
- Every packet from home traverses every uplink to CMTS

What is the downside? Interference between concurrent downloads/uploads!

verses every downlink /erses every uplink to CMTS

FTTH @Home Network

- FTTH = Fiber to the home
 - Active optical networks (AONs): long-range, e.g., 100km
 - Passive optical networks (PONs): short-range, e.g., 20km
- Hardware component
 - ONT (optical network terminator) @Home
 - OLT (optical line terminator) @Central office

: long-range, e.g., 100km s): short-range, e.g., 20km

or) @Home Central office

FTTH @Home Network

- FTTH = Fiber to the home
 - Active optical networks (AONs): long-range, e.g., 100km • Passive optical networks (PONs): short-range, e.g., 20km
- Hardware component
 - ONT (optical network terminator) @Home
 - OLT (optical line terminator) @Central office

FTTH @Home Network

- FTTH = Fiber to the home
 - Active optical networks (AONs): long-range, e.g., 100km • Passive optical networks (PONs): short-range, e.g., 20km
- Hardware component
 - ONT (optical network terminator) @Home
 - OLT (optical line terminator) @Central office

How can we multiplex signals? Wavelength-division multiplexing

5G Fixed Wireless @Home Network

- Based on the Beam-forming technology
 - Teco company => Internet Service Provider (ISP)

technology /ice Provider (ISP)

11

Ethernet @Enterprise Network

- The most widely used LAN technology
 - Invented by Robert Metcalfe, 2022 Turing Award
 - LAN = Local Area Network
 - Discuss extensively in this class

WiFi @Enterprise/Home Network

- Wireless access based on IEEE 802.11

Wireless Computer

• Common radio frequency bands: 2.4GHz, 5GHz, and 6GHz

3G, LTE 4G, and 5G @Mobile Network

- The cellular network infrastructure is rising
 - <u>https://5g.systemsapproach.org/index.html</u>

Communication Link Summary

- The physical media can carry bits in many forms Might not be the same as when you send them Guided media and unguided media
- Guided media
 - The waves are guided along a solid medium • E.g., Coaxial cable, fiber-optical cable, twisted-pair copper wire, etc.
- Unguided media

 - The waves are propagated in the atmosphere or even outer space • E.g., wireless LAN, satellite channel, etc.
- Low capital cost, but high operational cost!

A Conceptual Network Structure

A Conceptual Network Structure

What does this networking hardware do?

Store-and-Forward Transmission

- - Packets need to be buffered!

The hardware can only forward after receiving the entire packet

Store-and-Forward Transmission

- - Packets need to be buffered!

• The hardware can only forward after receiving the entire packet

• Suppose a packet has L bits, and a switch transmits at R bits/sec • The switch takes L/R time to transmit the packet at the outbound port

End-to-End Transmission

- Suppose the sender transmits 3 packets to the receiver
 - The packet has *L* bits
 - All devices transmit at *R* bits/sec
 - The link is infinitely fast

End-to-End Transmission

- Suppose the sender transmits 3 packets to the receiver
 - The packet has *L* bits
 - All devices transmit at *R* bits/sec
 - The link is infinitely fast
- Suppose the sender transmits 3 packets to the receiver • T = L/R, the switch sends the 1st pkt, the receiver gets nothing • T = 2x L/R, the switch sends the 2nd pkt, the receiver gets the 1st one • T = 3x L/R, the switch sends the 3nd pkt, the receiver gets the 2nd one • T = 4x L/R, the receiver gets all 3 packets

End-to-End Transmission

- Suppose the sender transmits 3 packets to the receiver
 - The packet has L bits
 - All devices transmit at *R* bits/sec
 - The link is infinitely fast
- Suppose the sender transmits 3 packets to the receiver • T = L/R, the switch sends the 1st pkt, the receiver gets nothing • T = 2x L/R, the switch sends the 2nd pkt, the receiver gets the 1st one • T = 3x L/R, the switch sends the 3nd pkt, the receiver gets the 2nd one

- T = 4x I/R the receiver dets all 3 packets

We'll learn another forwarding mechanism in the future.

Queue is Fixed-Sized Buffer

- The buffer capacity is limited
 - SRAM (Static random-access memory)
 - Fast, but hard to scale
- Packets are queued first, then dropped when becoming full SRAM (Static random-access memory)

 - Queueing delay

Forwarding Table

- Routing protocols fill in the following table
 E.g., RIP, OSPF, etc.
- Forwarding Table
 - SRAM or TCAM (Ternary Content Addressable Memory)
 - Read/Write/Delete + Match (Query)

ent Addressable Memory) Jery)

Circuit Switching

- Reservation-based system
 - Originally used in the telephone network
 - Communication can only happen after the end-to-end connection is ready

Multiplexing in Circuit Switching

- Frequency-division multiplexing (FDM)
 - The frequency spectrum is divided

 Time-division multiplexing (TDM) The transmission time slot is divided

Packet Switching v.s. Circuit Switching

- Packet switching
 - Pros: not suitable for real-time services
 - Cons: high utilization, simple

- Circuit switching
 - Pros: predictable performance
 - Cons: low resource usage

Packet Switching v.s. Circuit Switching

- Packet switching
 - Pros: not suitable for real-time services
 - Cons: high utilization, simple

- Circuit switching
 - Pros: predictable performance
 - Cons: low resource usage

Suppose there are 10 clients. One client is going to transmit 1000 100-bit packets, and the other nine are idle. Which switching is better?

Switching Summary

- An abstract switch machine
 - Input/Output ports, forwarding table, buffer, and traffic manager
 - Buffers have limited capacity
 - Forwarding tables are constructed by routing protocols
- Packet and circuit switching are two fundamental schemes Packet switching: on-demand
- - Circuit switching: reservation-based

What software do we need for computer networks?

What are the design requirements of computer networks?

- **#1: Anytime and anywhere connectivity**
- **#2: Always-on correctness**
- **#3: Reasonable performance**
- #4: Low cost
- **#5: Tolerable security**

A computer network should realize:

- **#1: Scalable and correct data movement**
- **#2: Reliable bits delivery**
- **#3: Resource multiplexing**
- **#4: Performance maximization**
- **#5: Access control**

A computer network should realize:

- **#1: Scalable and correct data movement**
- **#2: Reliable bits delivery**
- **#3: Resource multiplexing**
- **#4: Performance maximization**
- **#5: Access control**

Too hard!

Layering

- A modular approach to building networks by abstractions Introduce multiple levels of abstractions

 - Each layer focuses on different functionalities

Applicat
Application-to-
Host-to-h
Netwo

tion Semantics

- application Channels
- ost Connectivity

ork Hardware

Layering

- A modular approach to building networks by abstractions Introduce multiple levels of abstractions

 - Each layer focuses on different functionalities

- A protocol defines the format and the order of messages exchanged between two or more communication entities, as well as the actions taken on the transmission and/or receipt of a message or other event. • Vertical view: an interface to high-level protocols • Horizontal view: a peer interface to a counterpart

• OSI = Open System Interconnection

OSI model

Protocol Stack

TCP/IP

• We'll focus on this stack in this class

Five-layer Internet Stack

Application Layer

Transport Layer

Network Layer

Link Layer

Physical Layer

Segment

HI Frame

ZK Internet ZA Receiver

Learning Strategy

We'll take a bottom-up approach to learn

Application Layer

Transport Layer

Network Layer

Bits

- Today
 - Computer networks: hardware infrastructure
 - Computer networks: software system

- Next lecture
 - Computer networks: performance anlaysis

Summary

