
Ming Liu
mgliu@cs.wisc.edu

Introduction to Computer Networks

CS640
https://pages.cs.wisc.edu/~mgliu/CS640/S25/index.html

TCP Reliability
Support (II)

1

https://pages.cs.wisc.edu/~mgliu/CS640/S25/index.html

Outline

2

• Today
• TCP Reliability Support (II)

• Announcements
• Lab 4 due date 05/01/2025 12:01PM

• Last
• TCP Reliability Support (I)

Issue #1: Segment Loss

3

Sending application Receiving application

TCP
Send buffer

TCP
Recv buffer

• How do we know a segment is missing?
• How do we recover a missing segment?

Sender-side Detection

4

• Acknowledgment
• Ask the receiver to send back an ACK when a segment is received
• A missing ACK indicates a missing segment

• Timeout
• A signal that a segment that was sent but has not received its ACK within
a specified time frame (threshold)

• EWMA = Exponentially Weighted Moving Average

Receiver-side Detection

• Sequence number
• Ask the sender to assign a unique sequence number for each segment
• A missing sequence number indicates a segment loss

5

Seg 15 Seg 16 Seg 17 Seg 19 Seg 20 Seg 21?

Receiver-side Detection

• Sequence number
• Ask the sender to assign a unique sequence number for each segment
• A missing sequence number indicates a segment loss

5

Seg 15 Seg 16 Seg 17 Seg 19 Seg 20 Seg 21?

Is this good enough?

Receiver-side Detection

• Sequence number
• Ask the sender to assign a unique sequence number for each segment
• A missing sequence number indicates a segment loss

5

Seg 15 Seg 16 Seg 17 Seg 19 Seg 20 Seg 21?

How can we differentiate between a missing segment
and a slow-arriving (out-of-order) segment?

Receiver-side Detection

• Sequence number
• Ask the sender to assign a unique sequence number for each segment
• A missing sequence number indicates a segment loss

5

Seg 15 Seg 16 Seg 17 Seg 19 Seg 20 Seg 21?

• Approaches
• #1: view out-of-order segments as missing
• #2: apply timeout again

6

How should we recover the missing segment?

6

How should we recover the missing segment?

Just send it again!

6

How should we recover the missing segment?

Just send it again!

The sender must keep the segment until receiving the ACK.

Recover a Missing Segment

7

• Sender logic
• Retransmit a segment when its local timer is triggered
• Retransmit a segment when receiving an explicit ask from the receiver

• Receiver logic
• Send an explicit ask to fetch the missing segment
• Co-leasing or piggyback optimizations are possible to save bandwidth

Issue #2: Duplicated Segment

8

Sending application Receiving application

TCP
Send buffer

TCP
 Recv buffer14 14 15

Issue #2: Duplicated Segment

8

Sending application Receiving application

TCP
Send buffer

TCP
 Recv buffer14 14 15

• How do we know a segment is duplicated?
• How do we handle segment duplication?

Receiver-side Detection and Fix

9

• The segment holds the same sequence number as a prior one
• Seems simple, but how?

Receiver-side Detection and Fix

9

• The segment holds the same sequence number as a prior one
• Seems simple, but how?

The receiver must maintain the sequence number of all received segments.

Receiver-side Detection and Fix

9

• The segment holds the same sequence number as a prior one
• Seems simple, but how?

The receiver must maintain the sequence number of all received segments.

• Drop the duplicated segment directly

Receiver-side Detection and Fix

9

• The segment holds the same sequence number as a prior one
• Seems simple, but how?

The receiver must maintain the sequence number of all received segments.

• Drop the duplicated segment directly

Duplication is an important signal!

Understanding Duplication

10

• Why can the receiver receive a duplicated segment?

Understanding Duplication

10

• Why can the receiver receive a duplicated segment?
• Because the sender sends the segment again!

Understanding Duplication

10

• Why can the receiver receive a duplicated segment?
• Because the sender sends the segment again!

• Why can the sender send the segment again?

Understanding Duplication

10

• Why can the receiver receive a duplicated segment?
• Because the sender sends the segment again!

• Why can the sender send the segment again?
• Case #1: my local timeout is triggered
• Case #2: the receiver sends an explicit ask

Understanding Duplication

10

• Why can the receiver receive a duplicated segment?
• Because the sender sends the segment again!

• Why can the sender send the segment again?
• Case #1: my local timeout is triggered
• Case #2: the receiver sends an explicit ask

• The network is slow
• The sender should slow down

Issue #3: Out-of-order Segment

Sending application Receiving application

TCP
Send buffer

TCP
 Recv buffer14 16 18

• How do we know a segment is out-of-order?
• How do we handle out-of-order segments?

11

12

Receiver-side Detection and Fix

• There is a segment hole in the data stream
• The receiver should know what the next expected segment is
• A hole happens when the receiving segment number is not as expected

12

Receiver-side Detection and Fix

• There is a segment hole in the data stream
• The receiver should know what the next expected segment is
• A hole happens when the receiving segment number is not as expected

• Solution #1: just drop it and wait for the retransmission
• Pro: simple logics
• Con: waste bandwidth and hurt performance

12

Receiver-side Detection and Fix

• There is a segment hole in the data stream
• The receiver should know what the next expected segment is
• A hole happens when the receiving segment number is not as expected

• Solution #1: just drop it and wait for the retransmission
• Pro: simple logics
• Con: waste bandwidth and hurt performance

• Solution #2: take it and reconstruct the stream until the hold fills
• Pro: reduce retransmission and improve performance
• Con: complex logics

Understanding Out-of-order

13

• Why can the receiver receive an out-of-order segment?

Understanding Out-of-order

13

• Why can the receiver receive an out-of-order segment?
• #1: multiple transmission paths
• #2: segments are dropped

Understanding Out-of-order

13

• Why can the receiver receive an out-of-order segment?
• #1: multiple transmission paths
• #2: segments are dropped

• Missing v.s. Out-of-order

Understanding Out-of-order

13

• Why can the receiver receive an out-of-order segment?
• #1: multiple transmission paths
• #2: segments are dropped

• Missing v.s. Out-of-order
• Sometimes they are the same since the indicator is a segment hole
• But missing segments can also triggered by timeout

Understanding Out-of-order

13

• Why can the receiver receive an out-of-order segment?
• #1: multiple transmission paths
• #2: segments are dropped

• Missing v.s. Out-of-order
• Sometimes they are the same since the indicator is a segment hole
• But missing segments can also triggered by timeout

• The network is unstable
• Congestion happens during the transmission
• Communication paths become heterogeneous

Issue #4: Receiver Overwhelming

Sending application Receiving application

TCP
Send buffer

TCP
 Recv buffer

• How do we know the receiver is overwhelmed?
• How do we handle the receiver overwhelming?

14

Detection and Fix

15

• Receiver-side
• The receiver buffer is full
• More advanced, the receiver cannot pull the NIC buffer fast enough

Detection and Fix

15

• Receiver-side
• The receiver buffer is full
• More advanced, the receiver cannot pull the NIC buffer fast enough

• Solution
• Ask the sender to slow down explicitly

Detection and Fix

15

• Receiver-side
• The receiver buffer is full
• More advanced, the receiver cannot pull the NIC buffer fast enough

• Solution
• Ask the sender to slow down explicitly
• But, by how much?

Detection and Fix

15

• Receiver-side
• The receiver buffer is full
• More advanced, the receiver cannot pull the NIC buffer fast enough

• Solution
• Ask the sender to slow down explicitly
• But, by how much? => Tell the sender my buffer availability

What is the goal of TCP reliability mechanisms?

Byte stream @sender = Byte stream @receiver

• #1: TCP segments are delivered with no loss/duplication
• #2: TCP segments are delivered in order
• #3: The sender is not over-running the receiver capability

16

17

Combine Everything Together — TCP Sliding Window

• Continuously coordinate sender and receiver during transmission

Sending application

TCP

LastByteAcked

LastByteSent

LastByteWritten

Receiving application

TCP

NextByteExpected LastByteRcvd

LastByteRead

18

TCP Sliding Window—Sender

• Four state variables
• The last byte written by the application (LastByteWritten)
• The last byte being acknowledged (LastByteAcked)
• The last byte sent (LastByteSent)
• The sender buffer size (MaxSendBuffer)

19

TCP Sliding Window—Sender Logics

• Three variables manipulations:
• Advance LastByteWritten when an app writes
• Advance LastByteAcked when a consecutive ACK arrived
• Advance LastByteSent when the segments are sent

• Invariants:
• LastByteSent <=LastByteWritten
• LastByteAcked <= LastByteSent

• Buffered bytes:
• |LastByteWritten - LastByteAcked| <= MaxSendBuffer

TCP Sliding Window—Receiver

20

• Four state variables
• The last byte read by the application (LastByteRead)
• The last byte received (LastByteRcvd)
• The next byte supposed to be received (NextByteExpected)
• The receiver buffer size (MaxRcvBuffer)

TCP Sliding Window—Receiver Logics

• Three variables manipulations:
• Advance LastByteRead when an app reads
• Advance LastByteRcvd when the segment is received
• Advance NextByteExpected when the next expected segment is
received

• Invariants:
• LastByteRead < NextByteExpected
• NextByteExpected <= LastByteRcvd + 1

• Buffered bytes:
• |LastByteRcvd - LastByteRead| <= MaxRcvBuffer

21

How it works

22

Sending application

TCP

LastByteAcked

LastByteSent

LastByteWritten

Receiving application

TCP

NextByteExpected LastByteRcvd

LastByteRead

• Step #1: The sending application writes data to the send buffer
• LastByteWritten += sizeof (written data)

1

How it works

22

Sending application

TCP

LastByteAcked

LastByteSent

LastByteWritten

Receiving application

TCP

NextByteExpected LastByteRcvd

LastByteRead

• Step #2: The buffered data is sent out by OS/NIC
• LastByteSent += sizeof (sent data)

1

2

How it works

22

Sending application

TCP

LastByteAcked

LastByteSent

LastByteWritten

Receiving application

TCP

NextByteExpected LastByteRcvd

LastByteRead

• Step #3: The data is by the received host and put into the buffer
• LastByteRcvd += sizeof (received data)
• Advance NextByteExpected depending on if there is a hole

1

2
3

How it works

22

Sending application

TCP

LastByteAcked

LastByteSent

LastByteWritten

Receiving application

TCP

NextByteExpected LastByteRcvd

LastByteRead

• Step #4: Received data is sequenced in the buffer
• Advance NextByteExpected when necessary

1

2
34

How it works

22

Sending application

TCP

LastByteAcked

LastByteSent

LastByteWritten

Receiving application

TCP

NextByteExpected LastByteRcvd

LastByteRead

1

2
34

• Step #5: The receiving application reads data from the buffer
• LastByteRead += sizeof (read data)

5

How it works

22

Sending application

TCP

LastByteAcked

LastByteSent

LastByteWritten

Receiving application

TCP

NextByteExpected LastByteRcvd

LastByteRead

1

2
34

• Step #6: The receiving application sends ACKs to the sender
• Advance LastByteAcked when necessary

5

6

Why Sender Invariants

23

Sending application

TCP

LastByteAcked

LastByteSent

LastByteWritten

Receiving application

TCP

NextByteExpected LastByteRcvd

LastByteRead

1

2
34

5

6

• LastByteSent <=LastByteWritten
• LastByteAcked <= LastByteSent

Why Receiver Invariants

24

Sending application

TCP

LastByteAcked

LastByteSent

LastByteWritten

Receiving application

TCP

NextByteExpected LastByteRcvd

LastByteRead

1

2
34

5

6

• LastByteSent <=LastByteWritten
• LastByteAcked <= LastByteSent

• LastByteRead < NextByteExpected
• NextByteExpected <= LastByteRcvd + 1

Understanding the Sender Buffer

25

Sending application

TCP

LastByteAcked

LastByteSent

LastByteWritten

Receiving application

TCP

NextByteExpected LastByteRcvd

LastByteRead

1

2
34

5

6

• LastByteSent <=LastByteWritten
• LastByteAcked <= LastByteSent

• LastByteRead < NextByteExpected
• NextByteExpected <= LastByteRcvd + 1

• |LastByteWritten - LastByteAcked| <= MaxSendBuffer

Understanding the Receiver Buffer

26

Sending application

TCP

LastByteAcked

LastByteSent

LastByteWritten

Receiving application

TCP

NextByteExpected LastByteRcvd

LastByteRead

1

2
34

5

6

• LastByteSent <=LastByteWritten
• LastByteAcked <= LastByteSent

• LastByteRead < NextByteExpected
• NextByteExpected <= LastByteRcvd + 1

• |LastByteRcvd - LastByteRead| <= MaxRcvBuffer

Tackling Issue #1 (Missing Segment)

27

Sending application

TCP

LastByteAcked

LastByteSent

LastByteWritten

Receiving application

TCP

NextByteExpected LastByteRcvd

LastByteRead

Tackling Issue #1 (Missing Segment)

27

Sending application

TCP

LastByteAcked

LastByteSent

LastByteWritten

Receiving application

TCP

NextByteExpected LastByteRcvd

LastByteRead

• Receiver-side detection: [NextByteExpected, LastByteRcvd]
• Sender-side detection: [LastByteAcked, LastByteSent]
• Fix: buffered bytes are only freed before LastByteAcked

Tackling Issue #2 (Duplicated Segment)

28

Sending application

TCP

LastByteAcked

LastByteSent

LastByteWritten

Receiving application

TCP

NextByteExpected LastByteRcvd

LastByteRead

Tackling Issue #2 (Duplicated Segment)

28

• Detection: [LastByteRead, NextByteExpected]
• Fix: drop

Sending application

TCP

LastByteAcked

LastByteSent

LastByteWritten

Receiving application

TCP

NextByteExpected LastByteRcvd

LastByteRead

Tackling Issue #3 (Out-of-order Segment)

28

Sending application

TCP

LastByteAcked

LastByteSent

LastByteWritten

Receiving application

TCP

NextByteExpected LastByteRcvd

LastByteRead

Tackling Issue #3 (Out-of-order Segment)

28

• Detection: [NextByteExpected, LastByteRcvd]
• Fix: take if |LastByteRcvd - LastByteRead| <= MaxRcvBuffer

Sending application

TCP

LastByteAcked

LastByteSent

LastByteWritten

Receiving application

TCP

NextByteExpected LastByteRcvd

LastByteRead

Tackling Issue #4 (Receiver Overwhelming)

29

Sending application

TCP

LastByteAcked

LastByteSent

LastByteWritten

Receiving application

TCP

NextByteExpected LastByteRcvd

LastByteRead

Tackling Issue #4 (Receiver Overwhelming)

29

Sending application

TCP

LastByteAcked

LastByteSent

LastByteWritten

Receiving application

TCP

NextByteExpected LastByteRcvd

LastByteRead

• Detection: |LastByteRcvd - LastByteRead| <= MaxRcvBuffer
• Fix: tell the sender the available space (AdvertisedWindow)

Tackling Issue #4 (Receiver Overwhelming)

29

Sending application

TCP

LastByteAcked

LastByteSent

LastByteWritten

Receiving application

TCP

NextByteExpected LastByteRcvd

LastByteRead

• Detection: |LastByteRcvd - LastByteRead| <= MaxRcvBuffer
• Fix: tell the sender the available space (AdvertisedWindow)

AdvertisedWindow = MaxRcvBuffer - (LastByteRcvd - LastByteRead)

Tackling Issue #4 (Receiver Overwhelming)

29

Sending application

TCP

LastByteAcked

LastByteSent

LastByteWritten

Receiving application

TCP

NextByteExpected LastByteRcvd

LastByteRead

• Detection: |LastByteRcvd - LastByteRead| <= MaxRcvBuffer
• Fix: tell the sender the available space (AdvertisedWindow)

AdvertisedWindow = MaxRcvBuffer - (LastByteRcvd - LastByteRead)

AdvertisedWindow = MaxRcvBuffer - ((NextByteExpected - 1) - LastByteRead)

Revisiting TCP Header

30

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

TCP Flow Control

31

• The sender controls the transmission rate
• LastByteSent - LastByteAcked <= AdvertisedWindow
• EffectiveWindow = AdvertisedWindow - (LastByteSent - LastByteAcked)

Sending application

TCP

LastByteAcked
LastByteSent

LastByteWritten

TCP Flow Control Affects Application Performance

32

• The application speed is throttled
• LastByteWritten - LastByteAcked <= MaxSendBuffer
• Block sender if (LastByteWritten - LastByteAcked) + y > MaxSendBuffer

Sending application

TCP

LastByteAcked
LastByteSent

LastByteWritten

Flow Control More

• The receiver
• Always send ACKs in response to arriving data segments

33

• The sender
• Persistent sending at least one byte when AdvertisedWindow = 0

34

How does TCP solve the second issue?

• #1: Arbitrary communication
• Senders and receivers can talk to each other in any ways

• #2: No reliability guarantee
• Packets can be lost/duplicated/reordered during transmission
• A checksum is not enough

• #3: No resource management
• Each channel works as an exclusive network resource owner
• No adaptive support for the physical networks and applications

Summary

• Today
• TCP reliability support (II)

• Next lecture
• TCP congestion control

35

