TCP Reliability
Support (i)

Ming Liu
mgliu@cs.wisc.edu


https://pages.cs.wisc.edu/~mgliu/CS640/S25/index.html

Outline

o | ast
* TCP Reliability Support (I)

* Today
* TCP Reliability Support (Il)

e Announcements
e | ab 4 due date 05/01/2025 12:01PM



Issue #1: Segment Loss

Sending application

Receiving application

TCP

B  Sendbuffer B

TCP

B Recvbuffer B

e How do we know a segment is missing?
e How do we recover a missing segment?




Sender-side Detection

* Acknowledgment

* Ask the receiver to send back an ACK when a segment is received
* A missing ACK indicates a missing segment

* Timeout
* A signal that a segment that was sent but has not received its ACK within
a specified time frame (threshold)
 EWMA = Exponentially Weighted Moving Average



Recelver-side Detection

* Sequence number
* Ask the sender to assign a unique sequence number for each segment
* A missing sequence number indicates a segment loss
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Recelver-side Detection

* Sequence number
* Ask the sender to assign a unique sequence number for each segment
* A missing sequence number indicates a segment loss
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How can we differentiate between a missing segment
and a slow-arriving (out-of-order) segment?
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Recelver-side Detection

* Sequence number
* Ask the sender to assign a unique sequence number for each segment
* A missing sequence number indicates a segment loss

,

* Approaches
* #1: view out-of-order segments as missing
* #2: apply timeout again




How should we recover the missing segment?
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Recover a Missing Segment

» Sender logic
* Retransmit a segment when its local timer Is triggered
* Retransmit a segment when receiving an explicit ask from the receiver

* Recelver logic
* Send an explicit ask to fetch the missing segment
» Co-leasing or piggyback optimizations are possible to save bandwidth



Issue #2: Duplicated Segment
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Issue #2: Duplicated Segment

Sending application

Receiving application

TCP

)
14 | 14 Recv buffer

B  Sendbuffer B

e How do we know a segment is duplicated?
* How do we handle segment duplication?




Recelver-side Detection and Fix

* The segment holds the same sequence number as a prior one
* Seems simple, but how?
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Recelver-side Detection and Fix

* The segment holds the same sequence number as a prior one
* Seems simple, but how?

1
The receiver must maintain the sequence number of all received segments.

* Drop the duplicated segment directly



Recelver-side Detection and Fix

* The segment holds the same sequence number as a prior one
* Seems simple, but how?

|
|

- The receiver must maintain the sequence number of all received segments. |




Understanding Duplication

* Why can the receiver receive a duplicated segment?
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Understanding Duplication

* Why can the receiver receive a duplicated segment?
* Because the sender sends the segment again!

* Why can the sender send the segment again®?
» Case #1: my local timeout is triggered
» Case #2: the receiver sends an explicit ask

e The network iIs slow
* The sender should slow down
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Issue #3: Out-of-order Segment

Sending application

TCP

B  Sendbuffer B

e How do we know a segment is out-of-order?
e How do we handle out-of-order segments?

Receiving application

' BRrY BT Recv buffer
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Recelver-side Detection and Fix

* There Is a segment hole in the data stream
* The receiver should know what the next expected segment is
* A hole happens when the receiving segment number Is not as expected
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* Pro: simple logics
» Con: waste bandwidth and hurt performance

12



Recelver-side Detection and Fix

* There Is a segment hole in the data stream
* The receiver should know what the next expected segment is
* A hole happens when the receiving segment number Is not as expected

» Solution #1: just drop it and wait for the retransmission
* Pro: simple logics
» Con: waste bandwidth and hurt performance

» Solution #2: take it and reconstruct the stream until the hold fills
* Pro: reduce retransmission and improve performance
* Con: complex logics
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Understanding Out-of-order

* Why can the receiver receive an out-of-order segment?
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Understanding Out-of-order

* Why can the receiver receive an out-of-order segment?
* #1: multiple transmission paths
* #2. segments are dropped

* Missing v.s. Out-of-order
* Sometimes they are the same since the indicator is a segment hole
* But missing segments can also triggered by timeout

* The network is unstable
* Congestion happens during the transmission
 Communication paths become heterogeneous
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Issue #4: Receiver Overwhelming

Sending application Receiving application

TCP

B  Send buffer B I B B Recv buffer

e How do we know the receiver iIs overwhelmed?
* How do we handle the receiver overwhelming?
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Detection and Fix

 Receiver-side
* The receiver buffer is full
* More advanced, the receiver cannot pull the NIC buffer fast enough
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Detection and Fix

 Receiver-side
* The receiver buffer is full
* More advanced, the receiver cannot pull the NIC buffer fast enough

» Solution
* Ask the sender to slow down explicitly
* But, by how much? => Tell the sender my buffer availability
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What is the goal of TCP reliability mechanisms?

Byte stream @sender = Byte stream @receiver

o #1: TCP segments are delivered with no loss/duplication
o #2: TCP segments are delivered in order
e #3: The sender is not over-running the receiver capabillity

—— — — — ——
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Combine Everything Together — TCP Sliding Window

» Continuously coordinate sender and receiver during transmission

TCP

LastByteWritten TCP I

LastByteSent

LastByteRead

NextByteExpected LastByteRcvd

LastByteAcked
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TCP Sliding Window—Sender

* Four state variables
* The last byte written by the application (LastByteWritten)
* The last byte being acknowledged (LastByteAcked)
* The last byte sent (LastByteSent)
* The sender buffer size (MaxSendBuffer)
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TCP Sliding Window —Sender Logics

* Three variables manipulations:
* Advance LastByteWritten when an app writes
* Advance LastByteAcked when a consecutive ACK arrived
* Advance LastByteSent when the segments are sent

e |nvariants:

» LastByteSent <=LastByteWritten
» LastByteAcked <= LastByteSent

* Buffered bytes:
* |[LastByteWritten - LastByteAckedl <= MaxSendBuffer
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TCP Sliding Window —Receiver

* Four state variables
* The last byte read by the application (LastByteRead)
* The last byte received (LastByteRcvd)
* The next byte supposed to be received (NextByteExpected)
* The receiver buffer size (MaxRcvBuffer)
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TCP Sliding Window —Receiver Logics

* Three variables manipulations:
* Advance LastByteRead when an app reads
* Advance LastByteRcvd when the segment is received
* Advance NextByteExpected when the next expected segment is
received

e |nvariants:

» LastByteRead < NextByteExpected
* NextByteExpected <= LastByteRcvd + 1

* Buffered bytes:
* |LastByteRcvd - LastByteReadl <= MaxRcvBuffer
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How It works

» Step #1: The sending application writes data to the send buffer
» LastByteWritten += sizeof (written data)

1 »
LastByteWritten TCP

LastByteSent

LastByteRead TCP

NextByteExpected LastByteRcvd
LastByteAcked
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How It works

« Step #2: The buffered data is sent out by OS/NIC
» LastByteSent += sizeof (sent data)

1 »
LastByteWritten TCP

LastByteRead TCP
L astByteSent
e NextByteExpected LastByteRcvd

LastByteAcked

22



How It works

« Step #3: The data is by the received host and put into the buffer
* LastByteRcvd += sizeof (received data)
* Advance NextByteExpected depending on if there is a hole

1 »
LastByteWritten TCP

LastByteRead TCP
L astByteSent e
e NextByteExpected LastByteRcvd

LastByteAcked
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How It works

» Step #4: Received data is sequenced in the buffer
* Advance NextByteExpected when necessary

1 »
LastByteWritten TCP

LastByteRead TCP
L astByteSent e
e NextByte Expecgj LastByteRcvd

LastByteAcked
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How It works

» Step #5: The receiving application reads data from the buffer
* LastByteRead += sizeof (read data)

1 »
LastByteWritten TCP

LastByteRead TCP
L astByteSent e
e NextByte Expecgj LastByteRcvd

LastByteAcked
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How It works

» Step #6: The receiving application sends ACKs to the sender
* Advance LastByteAcked when necessary

TCP

1 »
LastByteWritten TCP

1 1
L astByteSent 0 e

e NextByteExpected LastByteRcvd

LastByteRead

LastByteAcked
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Why Sender Invariants

T e — .

o LastByteSent <=LastByteWritten
o L astByteAcked <= LastByteSent |

—— e —

|
|

— —— — —— __

TCP

LastByteWritten

LastByteRead

1 1
L astByteSent 0 e

e NextByteExpected LastByteRcvd

LastByteAcked



Why Recelver Invariants

e e ———— e

o LastByteSent <=LastByteWritten
o LastByteAcked <= LastByteSent *

|
|

LastByteWritten LastByteRead TCP
L astByteSent e
6 e NextByte Expecgj LastByteRcvd

LastByteAcked
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i

Understanding the Sender Buffer

T e —— m— == — — —

o LastByteSent <=LastByteWritten

o LastByteAcked <= LastByteSent

LastByteWritten LastByteRead TCP
L astByteSent 0 e
G e NextByteExpected LastByteRcvd
LastByteAcked

- e |LastByteWritten - LastByteAckedl <= MaxSendBuffer

— e
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i

Understanding the Receiver Buffer

o LastByteSent <=LastByteWritten
o LastByteAcked <= LastByteSent ‘"

LastByteWritten LastByteRead TCP
L astByteSent 0 e
e e NextByteExpected LastByteRcvd
LastByteAcked

- *lLastByteRcvd - LastByteRead| <= MaxRevBuffer

L _ _
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Tackling Issue #1 (Missing Segment)

TCP

LastByteWritten TCP I

LastByteSent

LastByteRead

NextByteExpected LastByteRcvd
LastByteAcked
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Tackling Issue #1 (Missing Segment)

* Receiver-side detection: [NextByteExpected, LastByteRcvd]
» Sender-side detection: [LastByteAcked, LastByteSent]
* Fix: buffered bytes are only freed before LastByteAcked

LastByteWritten TCP I

LastByteSent

TCP

LastByteRead

NextByteExpected LastByteRcvd
LastByteAcked
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Tackling Issue #2 (Duplicated Segment)

LastByteWritten TCP I

LastByteSent

TCP

LastByteRead

NextByteExpected LastByteRcvd

LastByteAcked
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Tackling Issue #2 (Duplicated Segment)

* Detection: [LastByteRead, NextByteExpected]
* Fix: drop

TCP

LastByteWritten TCP I

LastByteSent

LastByteRead

NextByteExpected LastByteRcvd
LastByteAcked
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Tackling Issue #3 (Out-of-order Segment)

LastByteWritten TCP I

LastByteSent

TCP

LastByteRead

NextByteExpected LastByteRcvd

LastByteAcked
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Tackling Issue #3 (Out-of-order Segment)

* Detection: [NextByteExpected, LastByteRcvd]
* Fix: take if ILastByteRcvd - LastByteReadl <= MaxRcvBuffer

LastByteWritten TCP I

LastByteSent

TCP

LastByteRead

NextByteExpected LastByteRcvd
LastByteAcked
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Tackling Issue #4 (Receiver Overwhelming)

LastByteWritten TCP I

LastByteSent

TCP

LastByteRead

NextByteExpected LastByteRcvd

LastByteAcked
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Tackling Issue #4 (Receiver Overwhelming)

* Detection: ILastByteRcvd - LastByteReadl <= MaxRcvBuffer
* Fix: tell the sender the available space (AdvertisedWindow)

TCP

LastByteWritten TCP I

LastByteSent

LastByteRead

NextByteExpected LastByteRcvd
LastByteAcked
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Tackling Issue #4 (Receiver Overwhelming)

* Detection: ILastByteRcvd - LastByteReadl <= MaxRcvBuffer
* Fix: tell the sender the available space (AdvertisedWindow)

— e T —— = E—

TCP

LastByteWritten

LastByteSent

LastByteRead

NextByteExpected LastByteRcvd

LastByteAcked
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Tackling Issue #4 (Receiver Overwhelming)

* Detection: ILastByteRcvd - LastByteReadl <= MaxRcvBuffer
* Fix: tell the sender the available space (AdvertisedWindow)

ey

AdvertisedWindow = MaxRcvBuffer - (NextByteExpected - 1) - LastByteRead) }

e — e — ——— — — ——a—————a = -I I . I - — = — - — e -

LastByteSent
NextByteExpected LastByteRcvd

LastByteAcked
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Revisiting TCP Header

4 10 16

31

SrcPort

DstPort

SequenceNum

Acknowledgment

HdrLen 0

Checksum

Flags AdvertisedWindow

UrgPtr

Options (variable)

Data

N
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TCP Flow Control

* The sender controls the transmission rate
» LastByteSent - LastByteAcked <= AdvertisedWindow
» EffectiveWindow = AdvertisedWindow - (LastByteSent - LastByteAcked)

LastByteWritten TCP

LastByteSent

LastByteAcked
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TCP Flow Control Affects Application Performance

* The application speed is throttled
 LastByteWritten - LastByteAcked <= MaxSendBuffer
* Block sender if (LastByteWritten - LastByteAcked) + y > MaxSendBuffer

LastByteWritten TCP

LastByteSent
LastByteAcked
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Flow Control More

* The receiver
* Always send ACKs in response to arriving data segments

* The sender
* Persistent sending at least one byte when AdvertisedWindow =0
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How does TCP solve the second issue?

* #2: No reliability guarantee

* Packets can be lost/duplicated/reordered during transmission
* A checksum is not enough

v
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* Today
* TCP reliability support (I

* Next lecture
* TCP congestion control

Summary

35



