TCP Reliability
Support (i)

Ming Liu
mgliu@cs.wisc.edu

https://pages.cs.wisc.edu/~mgliu/CS640/S25/index.html

Outline

o | ast
* TCP Reliability Support (I)

* Today
* TCP Reliability Support (Il)

e Announcements
e | ab 4 due date 05/01/2025 12:01PM

Issue #1: Segment Loss

Sending application

Receiving application

TCP

B Sendbuffer B

TCP

B Recvbuffer B

e How do we know a segment is missing?
e How do we recover a missing segment?

Sender-side Detection

* Acknowledgment

* Ask the receiver to send back an ACK when a segment is received
* A missing ACK indicates a missing segment

* Timeout
* A signal that a segment that was sent but has not received its ACK within
a specified time frame (threshold)
 EWMA = Exponentially Weighted Moving Average

Recelver-side Detection

* Sequence number
* Ask the sender to assign a unique sequence number for each segment
* A missing sequence number indicates a segment loss

,

Recelver-side Detection

* Sequence number
* Ask the sender to assign a unique sequence number for each segment
* A missing sequence number indicates a segment loss

,

|
|
|

Recelver-side Detection

* Sequence number
* Ask the sender to assign a unique sequence number for each segment
* A missing sequence number indicates a segment loss

,

How can we differentiate between a missing segment
and a slow-arriving (out-of-order) segment?

m
|
|
|
|

Recelver-side Detection

* Sequence number
* Ask the sender to assign a unique sequence number for each segment
* A missing sequence number indicates a segment loss

,

* Approaches
* #1: view out-of-order segments as missing
* #2: apply timeout again

How should we recover the missing segment?

How should we recover the missing segment?

Just send it again!

How should we recover the missing segment?

Just send it again!

Recover a Missing Segment

» Sender logic
* Retransmit a segment when its local timer Is triggered
* Retransmit a segment when receiving an explicit ask from the receiver

* Recelver logic
* Send an explicit ask to fetch the missing segment
» Co-leasing or piggyback optimizations are possible to save bandwidth

Issue #2: Duplicated Segment

TCP

14 | 14 Recv buffer

Issue #2: Duplicated Segment

Sending application

Receiving application

TCP

)
14 | 14 Recv buffer

B Sendbuffer B

e How do we know a segment is duplicated?
* How do we handle segment duplication?

Recelver-side Detection and Fix

* The segment holds the same sequence number as a prior one
* Seems simple, but how?

Recelver-side Detection and Fix

* The segment holds the same sequence number as a prior one
* Seems simple, but how?

1
The receiver must maintain the sequence number of all received segments.

Recelver-side Detection and Fix

* The segment holds the same sequence number as a prior one
* Seems simple, but how?

1
The receiver must maintain the sequence number of all received segments.

* Drop the duplicated segment directly

Recelver-side Detection and Fix

* The segment holds the same sequence number as a prior one
* Seems simple, but how?

|
|

- The receiver must maintain the sequence number of all received segments. |

Understanding Duplication

* Why can the receiver receive a duplicated segment?

10

Understanding Duplication

* Why can the receiver receive a duplicated segment?
* Because the sender sends the segment again!

10

Understanding Duplication

* Why can the receiver receive a duplicated segment?
* Because the sender sends the segment again!

* Why can the sender send the segment again®?

10

Understanding Duplication

* Why can the receiver receive a duplicated segment?
* Because the sender sends the segment again!

* Why can the sender send the segment again®?
» Case #1: my local timeout is triggered
» Case #2: the receiver sends an explicit ask

10

Understanding Duplication

* Why can the receiver receive a duplicated segment?
* Because the sender sends the segment again!

* Why can the sender send the segment again®?
» Case #1: my local timeout is triggered
» Case #2: the receiver sends an explicit ask

e The network iIs slow
* The sender should slow down

10

Issue #3: Out-of-order Segment

Sending application

TCP

B Sendbuffer B

e How do we know a segment is out-of-order?
e How do we handle out-of-order segments?

Receiving application

' BRrY BT Recv buffer

11

Recelver-side Detection and Fix

* There Is a segment hole in the data stream
* The receiver should know what the next expected segment is
* A hole happens when the receiving segment number Is not as expected

12

Recelver-side Detection and Fix

* There Is a segment hole in the data stream
* The receiver should know what the next expected segment is
* A hole happens when the receiving segment number Is not as expected

» Solution #1: just drop it and wait for the retransmission
* Pro: simple logics
» Con: waste bandwidth and hurt performance

12

Recelver-side Detection and Fix

* There Is a segment hole in the data stream
* The receiver should know what the next expected segment is
* A hole happens when the receiving segment number Is not as expected

» Solution #1: just drop it and wait for the retransmission
* Pro: simple logics
» Con: waste bandwidth and hurt performance

» Solution #2: take it and reconstruct the stream until the hold fills
* Pro: reduce retransmission and improve performance
* Con: complex logics

12

Understanding Out-of-order

* Why can the receiver receive an out-of-order segment?

13

Understanding Out-of-order

* Why can the receiver receive an out-of-order segment?
* #1: multiple transmission paths
* #2. segments are dropped

13

Understanding Out-of-order
* Why can the receiver receive an out-of-order segment?

* #1: multiple transmission paths
* #2. segments are dropped

* Missing v.s. Out-of-order

13

Understanding Out-of-order

* Why can the receiver receive an out-of-order segment?
* #1: multiple transmission paths
* #2. segments are dropped

* Missing v.s. Out-of-order
* Sometimes they are the same since the indicator is a segment hole
* But missing segments can also triggered by timeout

13

Understanding Out-of-order

* Why can the receiver receive an out-of-order segment?
* #1: multiple transmission paths
* #2. segments are dropped

* Missing v.s. Out-of-order
* Sometimes they are the same since the indicator is a segment hole
* But missing segments can also triggered by timeout

* The network is unstable
* Congestion happens during the transmission
 Communication paths become heterogeneous

13

Issue #4: Receiver Overwhelming

Sending application Receiving application

TCP

B Send buffer B I B B Recv buffer

e How do we know the receiver iIs overwhelmed?
* How do we handle the receiver overwhelming?

14

Detection and Fix

 Receiver-side
* The receiver buffer is full
* More advanced, the receiver cannot pull the NIC buffer fast enough

15

Detection and Fix

 Receiver-side
* The receiver buffer is full
* More advanced, the receiver cannot pull the NIC buffer fast enough

» Solution
* Ask the sender to slow down explicitly

15

Detection and Fix

 Receiver-side
* The receiver buffer is full
* More advanced, the receiver cannot pull the NIC buffer fast enough

» Solution
* Ask the sender to slow down explicitly
* But, by how much?

15

Detection and Fix

 Receiver-side
* The receiver buffer is full
* More advanced, the receiver cannot pull the NIC buffer fast enough

» Solution
* Ask the sender to slow down explicitly
* But, by how much? => Tell the sender my buffer availability

15

What is the goal of TCP reliability mechanisms?

Byte stream @sender = Byte stream @receiver

o #1: TCP segments are delivered with no loss/duplication
o #2: TCP segments are delivered in order
e #3: The sender is not over-running the receiver capabillity

—— — — — ——

16

Combine Everything Together — TCP Sliding Window

» Continuously coordinate sender and receiver during transmission

TCP

LastByteWritten TCP I

LastByteSent

LastByteRead

NextByteExpected LastByteRcvd

LastByteAcked

17

TCP Sliding Window—Sender

* Four state variables
* The last byte written by the application (LastByteWritten)
* The last byte being acknowledged (LastByteAcked)
* The last byte sent (LastByteSent)
* The sender buffer size (MaxSendBuffer)

18

TCP Sliding Window —Sender Logics

* Three variables manipulations:
* Advance LastByteWritten when an app writes
* Advance LastByteAcked when a consecutive ACK arrived
* Advance LastByteSent when the segments are sent

e |nvariants:

» LastByteSent <=LastByteWritten
» LastByteAcked <= LastByteSent

* Buffered bytes:
* |[LastByteWritten - LastByteAckedl <= MaxSendBuffer

19

TCP Sliding Window —Receiver

* Four state variables
* The last byte read by the application (LastByteRead)
* The last byte received (LastByteRcvd)
* The next byte supposed to be received (NextByteExpected)
* The receiver buffer size (MaxRcvBuffer)

20

TCP Sliding Window —Receiver Logics

* Three variables manipulations:
* Advance LastByteRead when an app reads
* Advance LastByteRcvd when the segment is received
* Advance NextByteExpected when the next expected segment is
received

e |nvariants:

» LastByteRead < NextByteExpected
* NextByteExpected <= LastByteRcvd + 1

* Buffered bytes:
* |LastByteRcvd - LastByteReadl <= MaxRcvBuffer

21

How It works

» Step #1: The sending application writes data to the send buffer
» LastByteWritten += sizeof (written data)

1 »
LastByteWritten TCP

LastByteSent

LastByteRead TCP

NextByteExpected LastByteRcvd
LastByteAcked

22

How It works

« Step #2: The buffered data is sent out by OS/NIC
» LastByteSent += sizeof (sent data)

1 »
LastByteWritten TCP

LastByteRead TCP
L astByteSent
e NextByteExpected LastByteRcvd

LastByteAcked

22

How It works

« Step #3: The data is by the received host and put into the buffer
* LastByteRcvd += sizeof (received data)
* Advance NextByteExpected depending on if there is a hole

1 »
LastByteWritten TCP

LastByteRead TCP
L astByteSent e
e NextByteExpected LastByteRcvd

LastByteAcked

22

How It works

» Step #4: Received data is sequenced in the buffer
* Advance NextByteExpected when necessary

1 »
LastByteWritten TCP

LastByteRead TCP
L astByteSent e
e NextByte Expecgj LastByteRcvd

LastByteAcked

22

How It works

» Step #5: The receiving application reads data from the buffer
* LastByteRead += sizeof (read data)

1 »
LastByteWritten TCP

LastByteRead TCP
L astByteSent e
e NextByte Expecgj LastByteRcvd

LastByteAcked

22

How It works

» Step #6: The receiving application sends ACKs to the sender
* Advance LastByteAcked when necessary

TCP

1 »
LastByteWritten TCP

1 1
L astByteSent 0 e

e NextByteExpected LastByteRcvd

LastByteRead

LastByteAcked

22

Why Sender Invariants

T e — .

o LastByteSent <=LastByteWritten
o L astByteAcked <= LastByteSent |

—— e —

|
|

— —— — —— __

TCP

LastByteWritten

LastByteRead

1 1
L astByteSent 0 e

e NextByteExpected LastByteRcvd

LastByteAcked

Why Recelver Invariants

e e ———— e

o LastByteSent <=LastByteWritten
o LastByteAcked <= LastByteSent *

|
|

LastByteWritten LastByteRead TCP
L astByteSent e
6 e NextByte Expecgj LastByteRcvd

LastByteAcked

24

i

Understanding the Sender Buffer

T e —— m— == — — —

o LastByteSent <=LastByteWritten

o LastByteAcked <= LastByteSent

LastByteWritten LastByteRead TCP
L astByteSent 0 e
G e NextByteExpected LastByteRcvd
LastByteAcked

- e |LastByteWritten - LastByteAckedl <= MaxSendBuffer

— e

25

i

Understanding the Receiver Buffer

o LastByteSent <=LastByteWritten
o LastByteAcked <= LastByteSent ‘"

LastByteWritten LastByteRead TCP
L astByteSent 0 e
e e NextByteExpected LastByteRcvd
LastByteAcked

- *lLastByteRcvd - LastByteRead| <= MaxRevBuffer

L _ _

26

Tackling Issue #1 (Missing Segment)

TCP

LastByteWritten TCP I

LastByteSent

LastByteRead

NextByteExpected LastByteRcvd
LastByteAcked

27

Tackling Issue #1 (Missing Segment)

* Receiver-side detection: [NextByteExpected, LastByteRcvd]
» Sender-side detection: [LastByteAcked, LastByteSent]
* Fix: buffered bytes are only freed before LastByteAcked

LastByteWritten TCP I

LastByteSent

TCP

LastByteRead

NextByteExpected LastByteRcvd
LastByteAcked

27

Tackling Issue #2 (Duplicated Segment)

LastByteWritten TCP I

LastByteSent

TCP

LastByteRead

NextByteExpected LastByteRcvd

LastByteAcked

28

Tackling Issue #2 (Duplicated Segment)

* Detection: [LastByteRead, NextByteExpected]
* Fix: drop

TCP

LastByteWritten TCP I

LastByteSent

LastByteRead

NextByteExpected LastByteRcvd
LastByteAcked

28

Tackling Issue #3 (Out-of-order Segment)

LastByteWritten TCP I

LastByteSent

TCP

LastByteRead

NextByteExpected LastByteRcvd

LastByteAcked

28

Tackling Issue #3 (Out-of-order Segment)

* Detection: [NextByteExpected, LastByteRcvd]
* Fix: take if ILastByteRcvd - LastByteReadl <= MaxRcvBuffer

LastByteWritten TCP I

LastByteSent

TCP

LastByteRead

NextByteExpected LastByteRcvd
LastByteAcked

28

Tackling Issue #4 (Receiver Overwhelming)

LastByteWritten TCP I

LastByteSent

TCP

LastByteRead

NextByteExpected LastByteRcvd

LastByteAcked

29

Tackling Issue #4 (Receiver Overwhelming)

* Detection: ILastByteRcvd - LastByteReadl <= MaxRcvBuffer
* Fix: tell the sender the available space (AdvertisedWindow)

TCP

LastByteWritten TCP I

LastByteSent

LastByteRead

NextByteExpected LastByteRcvd
LastByteAcked

29

Tackling Issue #4 (Receiver Overwhelming)

* Detection: ILastByteRcvd - LastByteReadl <= MaxRcvBuffer
* Fix: tell the sender the available space (AdvertisedWindow)

— e T —— = E—

TCP

LastByteWritten

LastByteSent

LastByteRead

NextByteExpected LastByteRcvd

LastByteAcked
29

Tackling Issue #4 (Receiver Overwhelming)

* Detection: ILastByteRcvd - LastByteReadl <= MaxRcvBuffer
* Fix: tell the sender the available space (AdvertisedWindow)

ey

AdvertisedWindow = MaxRcvBuffer - (NextByteExpected - 1) - LastByteRead) }

e — e — ——— — — ——a—————a = -I I . I - — = — - — e -

LastByteSent
NextByteExpected LastByteRcvd

LastByteAcked

29

Revisiting TCP Header

4 10 16

31

SrcPort

DstPort

SequenceNum

Acknowledgment

HdrLen 0

Checksum

Flags AdvertisedWindow

UrgPtr

Options (variable)

Data

N

30

TCP Flow Control

* The sender controls the transmission rate
» LastByteSent - LastByteAcked <= AdvertisedWindow
» EffectiveWindow = AdvertisedWindow - (LastByteSent - LastByteAcked)

LastByteWritten TCP

LastByteSent

LastByteAcked

31

TCP Flow Control Affects Application Performance

* The application speed is throttled
 LastByteWritten - LastByteAcked <= MaxSendBuffer
* Block sender if (LastByteWritten - LastByteAcked) + y > MaxSendBuffer

LastByteWritten TCP

LastByteSent
LastByteAcked

32

Flow Control More

* The receiver
* Always send ACKs in response to arriving data segments

* The sender
* Persistent sending at least one byte when AdvertisedWindow =0

33

How does TCP solve the second issue?

* #2: No reliability guarantee

* Packets can be lost/duplicated/reordered during transmission
* A checksum is not enough

v

34

* Today
* TCP reliability support (I

* Next lecture
* TCP congestion control

Summary

35

