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Recap: UDP Issues

* #3: NO resource management
* Each channel works as an exclusive network resource owner
* No adaptive support for the physical networks and applications
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Effectively use the networking resources

» Utilization: each networking hardware is fully utilized
* Fairness: each networking hardware is equally shared
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Challenges

* #1: Varying resource capacities
* The underlying networking fabric and hardware are dynamic

o #2: Unpredictable traffic
* We don’t know how applications use the network and their requirements
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The Key ldea

* The smart-sender dumb-receiver philosophy
* The sender adjusts the sending window based on congestion signals
* Congestion signal: an event telling network contention might happen

» Congestion window = Sending window
* Define the total amount of data the sender can push into the network
without overwhelming it
* AdvertiseWindow: the total amount of data the sender can send to the
receiver without overwhelming it
» EffectiveWindow=MIN(CongestionWindow, AdvertiseWindow)
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Let’s Start From the Begining
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How much data to send at first

* Option #1: send AdvertisedWindow-sized data
* Not overwhelming the receiver

Sending application
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How much data to send at first

* Option #1: send AdvertisedWindow-sized data
* Not overwhelming the receliver
* But this might overwhelm the network!

* Option #2: send random-sized data, whose size is N

* N is between 0 and AdveertisedWindow
* Not overwhelming the receiver
* But this might also overwhelm the network!

* Option #3: just send 1 segment => TCP goes with it
* A conservative approach but keeps the data pipe moving
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What happens next

» Case #1: the receiver receives the segment and returns an ACK
* The ACK also carries the AvertisedWindow

Sender Receiver

I
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What happens next

» Case #2: the receiver receives nothing
* The segment or its replied ACK is dropped, but we don’t know which one
* A local timeout triggers and the sender sends it again

Sender Receiver
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The 1st Round Summary

e Case 1: receive an ACK w/o timeout

» Effective BW = Segment Size / RTT
* Congestion Window > 1 segment

» Case 2: receive an ACK w/ timeout
 Effective BW = Segment Size / Amplified RTT
* Congestion Window = 1 segment

Sender Receiver

RTT
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How much data to send next round
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How much data to send next round

* Option #1: send AdvertisedWindow-sized data
* Not overwhelming the receiver
* But this might overwhelm the network!

The network bandwidth availabllity is still unknown!

* Option #3: send 1 segment
* A conservative approach
* Slow performance
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How much data to send next round

* Option #1: send AdvertisedWindow-sized data
* Not overwhelming the receiver
* But this might overwhelm the network!

— =——— — e —— _ — e = —

* Let’s introduce some “probing” here

* Option #4: send 2 segments
* Implication: The 1st round try with 1 segment succeeds. The network
might be able to do more!

———

* A conservative approach
* Slow performance
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What happens next?

» Case #1: the receiver receives two segments and returns ACKs
* The probing works!

Sender Receiver
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What happens next?

» Case #2: the receiver receives 1st segment and returns an ack
* The timeout of the 2nd segment => retransmit until receiving an ACK

Sender Receiver
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What happens next?

» Case #3: the receiver receives 2st segment and returns an ack
* An out-of-order ACK => retransmit
* Or a local timeout => retransmit

Sender Receiver
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What happens next?

» Case #4: the receiver receives nothing
* Local timeout triggers and retransmit

Sender Receiver
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The 2nd Round Summary

e Case #1: the receiver receives 2 ACKs

* Average BW = 3 segments / Time-to-send-3-segments
* 2nd BW = 2 segments / Time-to-send-2-segments
* Congestion Window > 2 segments

» Case #2: the receiver receives 1ACK (1st seg) w/ 2nd timeout
* Average BW = 3 segments / Time-to-send-3-segments (amplified)
» 2nd BW = 2 segments / Time-to-send-2-segments (amplified)
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The 2nd Round Summary (con't)

» Case #3: the receiver receives 2 ACK (2nd seg) w/o 2nd timeout
* An out-of-order ACK happens => an implicit signal on the contention
* But out-of-order ACK is not as strong as a local timeout
* Average BW = 3 segments / Time-to-send-3-segments (amplified)
» 2nd BW = 2 segments / Time-to-send-2-segments (amplified)
* Congestion Window = 1 segment

» Case #3’: the receiver receives 1 ACK (2nd seg) w/ 2nd timeout
* Average BW = 3 segments / Time-to-send-3-segments (amplified)
* 2nd BW = 2 segments / Time-to-send-2-segments (amplified)
* Congestion Window = 1 segment
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The 2nd Round Summary (con't)

» Case #4: the receiver receives nothing
* Average BW = 3 segments / Time-to-send-3-segments (amplified)
* 2nd BW = 2 segments / Time-to-send-2-segments (amplified)
* Congestion Window = 1 segment
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How much data to send next round?

Sender Receiver
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How much data to send next round?

» Keep probing if the last round succeeds
» Otherwise, just send 1 segment

Sender Receiver
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How much data to send next round?

* Suppose we do a probing
* Problem: how can we quickly find the maximum available capacity
* Let’'s do an exponential increase
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How much data to send next round?

* Suppose we do a probing
* Problem: how can we quickly find the maximum available capacity
* Let’'s do an exponential increase

Let’'s send 4 segments!

What would happen then?
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TCP Slow Start

* Determine the available networking capacity exponentially
* At round I, probe the congestion window with 27(i-1) segments
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TCP Slow Start

* Determine the available networking capacity exponentially
* At round I, probe the congestion window with 27(i-1) segments

» Congestion signal: out-of-order ACK
* An indirect indicator of a congested network
* Probing should stop
* Congestion window = congestion threshold
* Congestion threshold = congestion window/2

» Congestion signal: local time out
* A strong indicator of a congested network
* Probing should stop
* Congestion window = 1 segment
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TCP Slow Start

* Determine the available networking capacity exponentially
* At round I, probe the congestion window with 27(i-1) segments

» Congestion signal: out-of-order ACK
* An indirect indicator of a congested network
* Probing should stop
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TCP Slow Start

* Determine the available networking capacity exponentially
* At round I, probe the congestion window with 27(i-1) segments

» Congestion signal: out-of-order ACK
* An indirect indicator of a congested network
* Probing should stop

s this efficient? |
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. Problng should stop
* Congestion window = 1 segment
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* Today
* TCP congestion control (I)

* Next lecture
* TCP congestion control (Il)

Summary
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