TCP Congestion
Control (1)

Ming Liu
mgliu@cs.wisc.edu


https://pages.cs.wisc.edu/~mgliu/CS640/S25/index.html

Outline

o | ast
* TCP Reliability Support (Il)

* Today
* TCP Congestion Control (I)

e Announcements
e | ab 4 due date 05/01/2025 12:01PM



Recap: UDP Issues

* #3: NO resource management
* Each channel works as an exclusive network resource owner
* No adaptive support for the physical networks and applications



Set Up the Context

Send buffer -_— Recv buffer




Set Up the Context

Send buffer Recv buffer




What is the goal of TCP congestion control?



What is the goal of TCP congestion control?

Effectively use the networking resources



What is the goal of TCP congestion control?

Effectively use the networking resources

» Utilization: each networking hardware is fully utilized
* Fairness: each networking hardware is equally shared



Challenges

* #1: Varying resource capacities
* The underlying networking fabric and hardware are dynamic



Challenges

* #1: Varying resource capacities
* The underlying networking fabric and hardware are dynamic

o #2: Unpredictable traffic
* We don’t know how applications use the network and their requirements



The Key ldea

* The smart-sender dumb-receiver philosophy
* The sender adjusts the sending window based on congestion signals
* Congestion signal: an event telling network contention might happen



The Key ldea

* The smart-sender dumb-receiver philosophy
* The sender adjusts the sending window based on congestion signals
* Congestion signal: an event telling network contention might happen

» Congestion window = Sending window
* Define the total amount of data the sender can push into the network
without overwhelming it
* AdvertiseWindow: the total amount of data the sender can send to the
receiver without overwhelming it



The Key ldea

* The smart-sender dumb-receiver philosophy
* The sender adjusts the sending window based on congestion signals
* Congestion signal: an event telling network contention might happen

» Congestion window = Sending window
* Define the total amount of data the sender can push into the network
without overwhelming it
* AdvertiseWindow: the total amount of data the sender can send to the
receiver without overwhelming it
» EffectiveWindow=MIN(CongestionWindow, AdvertiseWindow)

|
|
|




Let’s Start From the Begining

CLOSED
A

Active open/SYN

Passive open Close
LISTEN
SYN/SYN +AC Send/SYN
SYN RCVD 3 SYN/SYN + ACK =l SYN SENT
ACK SYN + ACK/ACK
Close/FIN ESTABLlSHED,
' Close/FIN FIN/ACK
FIN. WAIT 1 [* | CLOSE_WAIT
FIN/ACK

ACK Close/FIN

FIN_WAIT 2 CLOSING LAST ACK
l ACK Timeout ??fert.two l ACK
FIN/ACK segment liretimes

>~ TIME_WAIT

=l CLOSED




How much data to send at first



How much data to send at first

* Option #1: send AdvertisedWindow-sized data
* Not overwhelming the receiver

Sending application

| astByteWritten TCP

LastByteSent

LastByteAcked



How much data to send at first

* Option #1: send AdvertisedWindow-sized data
* Not overwhelming the receliver
* But this might overwhelm the network!

LastByteWritten TCP

LastByteSent

LastByteAcked



How much data to send at first

* Option #1: send AdvertisedWindow-sized data
* Not overwhelming the receliver
* But this might overwhelm the network!

* Option #2: send random-sized data, whose size is N

N Is between 0 and AdveertisedWindow
* Not overwhelming the receiver



How much data to send at first

* Option #1: send AdvertisedWindow-sized data
* Not overwhelming the receliver
* But this might overwhelm the network!

* Option #2: send random-sized data, whose size is N
* N is between 0 and AdveertisedWindow
* Not overwhelming the receiver
* But this might also overwhelm the network!



How much data to send at first

* Option #1: send AdvertisedWindow-sized data
* Not overwhelming the receliver
* But this might overwhelm the network!

* Option #2: send random-sized data, whose size is N

* N is between 0 and AdveertisedWindow
* Not overwhelming the receiver
* But this might also overwhelm the network!

» Option #3: just send 1 segment
* A conservative approach but keeps the data pipe moving



How much data to send at first

* Option #1: send AdvertisedWindow-sized data
* Not overwhelming the receliver
* But this might overwhelm the network!

* Option #2: send random-sized data, whose size is N

* N is between 0 and AdveertisedWindow
* Not overwhelming the receiver
* But this might also overwhelm the network!

* Option #3: just send 1 segment => TCP goes with it
* A conservative approach but keeps the data pipe moving



What happens next

Sender Receiver

10



What happens next

» Case #1: the receiver receives the segment and returns an ACK
* The ACK also carries the AvertisedWindow

Sender Receiver

I

10



What happens next

» Case #2: the receiver receives nothing
* The segment or its replied ACK is dropped, but we don’t know which one
* A local timeout triggers and the sender sends it again

Sender Receiver

10



The 1st Round Summary

e Case 1: receive an ACK w/o timeout

» Effective BW = Segment Size / RTT
* Congestion Window > 1 segment

» Case 2: receive an ACK w/ timeout
 Effective BW = Segment Size / Amplified RTT
* Congestion Window = 1 segment

Sender Receiver

RTT

11



How much data to send next round

12



How much data to send next round

* Option #1: send AdvertisedWindow-sized data
* Not overwhelming the receliver
* But this might overwhelm the network!

* Option #2: send random-sized data, whose size is N

* N is between 0 and AdveertisedWindow
* Not overwhelming the receiver
* But this might also overwhelm the network!

* Option #3: send 1 segment
* A conservative approach
* Slow performance

12



How much data to send next round

* Option #1: send AdvertisedWindow-sized data
* Not overwhelming the receiver
* But this might overwhelm the network!

The network bandwidth availabllity is still unknown!

* Option #3: send 1 segment
* A conservative approach
* Slow performance

12



How much data to send next round

* Option #1: send AdvertisedWindow-sized data
* Not overwhelming the receiver
* But this might overwhelm the network!

— =——— — e —— _ — e = —

* Let’s introduce some “probing” here

* Option #4: send 2 segments
* Implication: The 1st round try with 1 segment succeeds. The network
might be able to do more!

———

* A conservative approach
* Slow performance

12



What happens next?

» Case #1: the receiver receives two segments and returns ACKs
* The probing works!

Sender Receiver

\

13



What happens next?

» Case #2: the receiver receives 1st segment and returns an ack
* The timeout of the 2nd segment => retransmit until receiving an ACK

Sender Receiver

\

i

13



What happens next?

» Case #3: the receiver receives 2st segment and returns an ack
* An out-of-order ACK => retransmit
* Or a local timeout => retransmit

Sender Receiver

13



What happens next?

» Case #4: the receiver receives nothing
* Local timeout triggers and retransmit

Sender Receiver

13



The 2nd Round Summary

e Case #1: the receiver receives 2 ACKs

* Average BW = 3 segments / Time-to-send-3-segments
* 2nd BW = 2 segments / Time-to-send-2-segments
* Congestion Window > 2 segments

» Case #2: the receiver receives 1ACK (1st seg) w/ 2nd timeout
* Average BW = 3 segments / Time-to-send-3-segments (amplified)
» 2nd BW = 2 segments / Time-to-send-2-segments (amplified)

14



The 2nd Round Summary

» Case #1: the receiver receives 2 ACKs
* Average BW = 3 segments / Time-to-send-3-segments
* 2nd BW = 2 segments / Time-to-send-2-segments
* Congestion Window > 2 segments

» Case #2: the receiver receives 1ACK (1st seg) w/ 2nd timeout
* Average BW = 3 segments / Time-to-send-3-segments (amplified)
» 2nd BW = 2 segments / Time-to-send-2-segments (amplified)
* Congestion Window = 1 segment

14



The 2nd Round Summary (con't)

» Case #3: the receiver receives 2 ACK (2nd seg) w/o 2nd timeout
* An out-of-order ACK happens => an implicit signal on the contention
* But out-of-order ACK is not as strong as a local timeout
* Average BW = 3 segments / Time-to-send-3-segments (amplified)
» 2nd BW = 2 segments / Time-to-send-2-segments (amplified)
* Congestion Window = 1 segment

» Case #3’: the receiver receives 1 ACK (2nd seg) w/ 2nd timeout
* Average BW = 3 segments / Time-to-send-3-segments (amplified)
* 2nd BW = 2 segments / Time-to-send-2-segments (amplified)
* Congestion Window = 1 segment

15



The 2nd Round Summary (con't)

» Case #4: the receiver receives nothing
* Average BW = 3 segments / Time-to-send-3-segments (amplified)
* 2nd BW = 2 segments / Time-to-send-2-segments (amplified)
* Congestion Window = 1 segment

16



How much data to send next round?

Sender Receiver

\

17



How much data to send next round?

» Keep probing if the last round succeeds
» Otherwise, just send 1 segment

Sender Receiver

\

17



How much data to send next round?

* Suppose we do a probing
* Problem: how can we quickly find the maximum available capacity
* Let’'s do an exponential increase

Sender Receiver

\

17



How much data to send next round?

* Suppose we do a probing
* Problem: how can we quickly find the maximum available capacity

* | et’'s do an exponential increase

17



How much data to send next round?

* Suppose we do a probing
* Problem: how can we quickly find the maximum available capacity
* Let’'s do an exponential increase

Let’'s send 4 segments!

What would happen then?

— — = = — e —_— e T — = ——— - p— - E— p— ——

/

17



TCP Slow Start

* Determine the available networking capacity exponentially
* At round I, probe the congestion window with 27(i-1) segments

Source Destination

W\

y
'
\
)

\
,ozo
i
\

AV




TCP Slow Start

* Determine the available networking capacity exponentially
* At round I, probe the congestion window with 27(i-1) segments

» Congestion signal: out-of-order ACK
* An indirect indicator of a congested network
* Probing should stop

18



TCP Slow Start

* Determine the available networking capacity exponentially
* At round I, probe the congestion window with 27(i-1) segments

» Congestion signal: out-of-order ACK
* An indirect indicator of a congested network
* Probing should stop
* Congestion window = congestion threshold
* Congestion threshold = congestion window/2

|

18



TCP Slow Start

* Determine the available networking capacity exponentially
* At round I, probe the congestion window with 27(i-1) segments

» Congestion signal: out-of-order ACK
* An indirect indicator of a congested network
* Probing should stop
* Congestion window = congestion threshold
* Congestion threshold = congestion window/2

» Congestion signal: local time out
* A strong indicator of a congested network
* Probing should stop
* Congestion window = 1 segment

18



TCP Slow Start

* Determine the available networking capacity exponentially
* At round I, probe the congestion window with 27(i-1) segments

» Congestion signal: out-of-order ACK
* An indirect indicator of a congested network
* Probing should stop

JLTITITUJ ITTUTIN IT T U \J AU A TCLVV U \ B

. Problng should stop
* Congestion window = 1 segment

18



TCP Slow Start

* Determine the available networking capacity exponentially
* At round I, probe the congestion window with 27(i-1) segments

» Congestion signal: out-of-order ACK
* An indirect indicator of a congested network
* Probing should stop

s this efficient? |

JLTITITUJ ITTUTIN IT T U \J AU A TCLVV U \ B

. Problng should stop
* Congestion window = 1 segment

18



* Today
* TCP congestion control (I)

* Next lecture
* TCP congestion control (Il)

Summary

19



