
Ming Liu
mgliu@cs.wisc.edu

Introduction to Computer Networks

CS640
https://pages.cs.wisc.edu/~mgliu/CS640/S25/index.html

TCP Congestion
Control (I)

1

https://pages.cs.wisc.edu/~mgliu/CS640/S25/index.html

Outline

2

• Today
• TCP Congestion Control (I)

• Announcements
• Lab 4 due date 05/01/2025 12:01PM

• Last
• TCP Reliability Support (II)

3

Recap: UDP Issues

• #1: Arbitrary communication
• Senders and receivers can talk to each other in any ways

• #2: No reliability guarantee
• Packets can be lost/duplicated/reordered during transmission
• A checksum is not enough

• #3: No resource management
• Each channel works as an exclusive network resource owner
• No adaptive support for the physical networks and applications

Sending application Receiving application

TCP

Send buffer

TCP

Recv buffer

Set Up the Context

4

Sending application Receiving application

TCP

Send buffer

TCP

Recv buffer

Set Up the Context

4

Our
Focus

What is the goal of TCP congestion control?

5

What is the goal of TCP congestion control?

5

Effectively use the networking resources

What is the goal of TCP congestion control?

5

Effectively use the networking resources
• Utilization: each networking hardware is fully utilized

• Fairness: each networking hardware is equally shared

Challenges

• #1: Varying resource capacities
• The underlying networking fabric and hardware are dynamic

6

Challenges

• #1: Varying resource capacities
• The underlying networking fabric and hardware are dynamic

6

• #2: Unpredictable traffic
• We don’t know how applications use the network and their requirements

The Key Idea

7

• The smart-sender dumb-receiver philosophy
• The sender adjusts the sending window based on congestion signals
• Congestion signal: an event telling network contention might happen

The Key Idea

7

• The smart-sender dumb-receiver philosophy
• The sender adjusts the sending window based on congestion signals
• Congestion signal: an event telling network contention might happen

• Congestion window = Sending window
• Define the total amount of data the sender can push into the network
without overwhelming it

• AdvertiseWindow: the total amount of data the sender can send to the
receiver without overwhelming it

The Key Idea

7

• The smart-sender dumb-receiver philosophy
• The sender adjusts the sending window based on congestion signals
• Congestion signal: an event telling network contention might happen

• Congestion window = Sending window
• Define the total amount of data the sender can push into the network
without overwhelming it

• AdvertiseWindow: the total amount of data the sender can send to the
receiver without overwhelming it

• EffectiveWindow=MIN(CongestionWindow, AdvertiseWindow)

But how?

Let’s Start From the Begining

8

How much data to send at first

9

How much data to send at first

9

• Option #1: send AdvertisedWindow-sized data
• Not overwhelming the receiver

Sending application

TCP

LastByteAcked

LastByteSent

LastByteWritten

How much data to send at first

9

• Option #1: send AdvertisedWindow-sized data
• Not overwhelming the receiver
• But this might overwhelm the network!

Sending application

TCP

LastByteAcked

LastByteSent

LastByteWritten

How much data to send at first

9

• Option #1: send AdvertisedWindow-sized data
• Not overwhelming the receiver
• But this might overwhelm the network!

• Option #2: send random-sized data, whose size is N
• N is between 0 and AdveertisedWindow
• Not overwhelming the receiver

How much data to send at first

9

• Option #1: send AdvertisedWindow-sized data
• Not overwhelming the receiver
• But this might overwhelm the network!

• Option #2: send random-sized data, whose size is N
• N is between 0 and AdveertisedWindow
• Not overwhelming the receiver
• But this might also overwhelm the network!

How much data to send at first

9

• Option #1: send AdvertisedWindow-sized data
• Not overwhelming the receiver
• But this might overwhelm the network!

• Option #2: send random-sized data, whose size is N
• N is between 0 and AdveertisedWindow
• Not overwhelming the receiver
• But this might also overwhelm the network!

• Option #3: just send 1 segment
• A conservative approach but keeps the data pipe moving

How much data to send at first

9

• Option #1: send AdvertisedWindow-sized data
• Not overwhelming the receiver
• But this might overwhelm the network!

• Option #2: send random-sized data, whose size is N
• N is between 0 and AdveertisedWindow
• Not overwhelming the receiver
• But this might also overwhelm the network!

• Option #3: just send 1 segment => TCP goes with it
• A conservative approach but keeps the data pipe moving

What happens next

10

Sender Receiver

What happens next

10

Sender Receiver

• Case #1: the receiver receives the segment and returns an ACK
• The ACK also carries the AvertisedWindow

What happens next

10

Sender Receiver

• Case #2: the receiver receives nothing
• The segment or its replied ACK is dropped, but we don’t know which one
• A local timeout triggers and the sender sends it again

The 1st Round Summary

Sender Receiver

• Case 1: receive an ACK w/o timeout
• Effective BW = Segment Size / RTT
• Congestion Window > 1 segment

{RTT

11

• Case 2: receive an ACK w/ timeout
• Effective BW = Segment Size / Amplified RTT
• Congestion Window = 1 segment

How much data to send next round

12

How much data to send next round

12

• Option #1: send AdvertisedWindow-sized data
• Not overwhelming the receiver
• But this might overwhelm the network!

• Option #2: send random-sized data, whose size is N
• N is between 0 and AdveertisedWindow
• Not overwhelming the receiver
• But this might also overwhelm the network!

• Option #3: send 1 segment
• A conservative approach
• Slow performance

How much data to send next round

12

• Option #1: send AdvertisedWindow-sized data
• Not overwhelming the receiver
• But this might overwhelm the network!

• Option #2: send random-sized data, whose size is N
• N is between 0 and AdveertisedWindow
• Not overwhelming the receiver
• But this might also overwhelm the network!

• Option #3: send 1 segment
• A conservative approach
• Slow performance

The network bandwidth availability is still unknown!

How much data to send next round

12

• Option #1: send AdvertisedWindow-sized data
• Not overwhelming the receiver
• But this might overwhelm the network!

• Option #2: send random-sized data, whose size is N
• N is between 0 and AdveertisedWindow
• Not overwhelming the receiver
• But this might also overwhelm the network!

• Option #3: send 1 segment
• A conservative approach
• Slow performance

• Let’s introduce some “probing” here
• Option #4: send 2 segments

• Implication: The 1st round try with 1 segment succeeds. The network
might be able to do more!

Sender Receiver

13

What happens next?

• Case #1: the receiver receives two segments and returns ACKs
• The probing works!

Sender Receiver

13

What happens next?

• Case #2: the receiver receives 1st segment and returns an ack
• The timeout of the 2nd segment => retransmit until receiving an ACK

Sender Receiver

13

What happens next?

• Case #3: the receiver receives 2st segment and returns an ack
• An out-of-order ACK => retransmit
• Or a local timeout => retransmit

Sender Receiver

13

What happens next?

• Case #4: the receiver receives nothing
• Local timeout triggers and retransmit

The 2nd Round Summary

14

• Case #1: the receiver receives 2 ACKs
• Average BW = 3 segments / Time-to-send-3-segments
• 2nd BW = 2 segments / Time-to-send-2-segments
• Congestion Window > 2 segments

• Case #2: the receiver receives 1ACK (1st seg) w/ 2nd timeout
• Average BW = 3 segments / Time-to-send-3-segments (amplified)
• 2nd BW = 2 segments / Time-to-send-2-segments (amplified)

The 2nd Round Summary

14

• Case #1: the receiver receives 2 ACKs
• Average BW = 3 segments / Time-to-send-3-segments
• 2nd BW = 2 segments / Time-to-send-2-segments
• Congestion Window > 2 segments

• Case #2: the receiver receives 1ACK (1st seg) w/ 2nd timeout
• Average BW = 3 segments / Time-to-send-3-segments (amplified)
• 2nd BW = 2 segments / Time-to-send-2-segments (amplified)
• Congestion Window = 1 segment

1 segment is the congestion window from the last round.

The 2nd Round Summary (con’t)

15

• Case #3: the receiver receives 2 ACK (2nd seg) w/o 2nd timeout
• An out-of-order ACK happens => an implicit signal on the contention
• But out-of-order ACK is not as strong as a local timeout
• Average BW = 3 segments / Time-to-send-3-segments (amplified)
• 2nd BW = 2 segments / Time-to-send-2-segments (amplified)
• Congestion Window = 1 segment

• Case #3’: the receiver receives 1 ACK (2nd seg) w/ 2nd timeout
• Average BW = 3 segments / Time-to-send-3-segments (amplified)
• 2nd BW = 2 segments / Time-to-send-2-segments (amplified)
• Congestion Window = 1 segment

The 2nd Round Summary (con’t)

16

• Case #4: the receiver receives nothing
• Average BW = 3 segments / Time-to-send-3-segments (amplified)
• 2nd BW = 2 segments / Time-to-send-2-segments (amplified)
• Congestion Window = 1 segment

17

How much data to send next round?

Sender Receiver

17

How much data to send next round?

Sender Receiver

• Keep probing if the last round succeeds
• Otherwise, just send 1 segment

17

How much data to send next round?

Sender Receiver

• Suppose we do a probing
• Problem: how can we quickly find the maximum available capacity
• Let’s do an exponential increase

17

How much data to send next round?

Sender Receiver

• Suppose we do a probing
• Problem: how can we quickly find the maximum available capacity
• Let’s do an exponential increase

Let’s send 4 segments!

17

How much data to send next round?

Sender Receiver

• Suppose we do a probing
• Problem: how can we quickly find the maximum available capacity
• Let’s do an exponential increase

Let’s send 4 segments!
What would happen then?

TCP Slow Start

18

• Determine the available networking capacity exponentially
• At round i, probe the congestion window with 2^(i-1) segments

TCP Slow Start

18

• Determine the available networking capacity exponentially
• At round i, probe the congestion window with 2^(i-1) segments

• Congestion signal: out-of-order ACK
• An indirect indicator of a congested network
• Probing should stop

TCP Slow Start

18

• Determine the available networking capacity exponentially
• At round i, probe the congestion window with 2^(i-1) segments

• Congestion signal: out-of-order ACK
• An indirect indicator of a congested network
• Probing should stop
• Congestion window = congestion threshold
• Congestion threshold = congestion window/2

The congestion threshold is continuously updated every
round to capture the bandwidth availability.

TCP Slow Start

18

• Determine the available networking capacity exponentially
• At round i, probe the congestion window with 2^(i-1) segments

• Congestion signal: local time out
• A strong indicator of a congested network
• Probing should stop
• Congestion window = 1 segment

• Congestion signal: out-of-order ACK
• An indirect indicator of a congested network
• Probing should stop
• Congestion window = congestion threshold
• Congestion threshold = congestion window/2

TCP Slow Start

18

• Determine the available networking capacity exponentially
• At round i, probe the congestion window with 2^(i-1) segments

• Congestion signal: local time out
• A strong indicator of a congested network
• Probing should stop
• Congestion window = 1 segment

• Congestion signal: out-of-order ACK
• An indirect indicator of a congested network
• Probing should stop
• Congestion window = congestion threshold
• Congestion threshold = congestion window/2

How does the transmission look like so far?

TCP Slow Start

18

• Determine the available networking capacity exponentially
• At round i, probe the congestion window with 2^(i-1) segments

• Congestion signal: local time out
• A strong indicator of a congested network
• Probing should stop
• Congestion window = 1 segment

• Congestion signal: out-of-order ACK
• An indirect indicator of a congested network
• Probing should stop
• Congestion window = congestion threshold
• Congestion threshold = congestion window/2

Is this efficient?

Summary

• Today
• TCP congestion control (I)

• Next lecture
• TCP congestion control (II)

19

