
Ming Liu
mgliu@cs.wisc.edu

Introduction to Computer Networks

CS640
https://pages.cs.wisc.edu/~mgliu/CS640/S25/index.html

TCP Congestion
Control (II)

1

https://pages.cs.wisc.edu/~mgliu/CS640/S25/index.html

Outline

2

• Today
• TCP Congestion Control (II)

• Announcements
• No class this Thursday (04/17)
• Lab 4 due date 05/01/2025 12:01PM

• Last
• TCP Congestion Control (I)

3

Recap: UDP Issues

• #1: Arbitrary communication
• Senders and receivers can talk to each other in any ways

• #2: No reliability guarantee
• Packets can be lost/duplicated/reordered during transmission
• A checksum is not enough

• #3: No resource management
• Each channel works as an exclusive network resource owner
• No adaptive support for the physical networks and applications

TCP Slow Start

4

• Determine the available networking capacity exponentially
• At round i, probe the congestion window with 2^(i-1) segments

TCP Slow Start

4

• Determine the available networking capacity exponentially
• At round i, probe the congestion window with 2^(i-1) segments

Not efficient

The goal of TCP congestion control:

5

Effectively use the networking resources
• Utilization: each networking hardware is fully utilized

• Fairness: each networking hardware is equally shared

6

Running Phase Bandwidth Adjustment: AIMD

• Adjust the window for fairness and high utilization

• Additive Increase/Multiplicative Decrease
• Additive increase CongestionWindow when the congestion goes down
• Multiplicate decrease CongestionWindow when the congestion goes up

Congestion goes up

• Signals:
• Packet loss
• Out-of-order ACK

7

Congestion goes up

• Signals:
• Packet loss
• Out-of-order ACK

7

• Multiplicative Decrease and Why

Congestion goes up

• Signals:
• Packet loss
• Out-of-order ACK

7

• Multiplicative Decrease and Why
• Quickly shrink the congestion window to avoid congestion collapse
• Reduce to 1 segment under heavy contention => packet loss
• Reduce to >1 segment under light contention => out-of-order ACK
• Congestion Window = Congestion Window X Parameter

Congestion goes down

8

• Signals:
• Packets from the last congestion window are delivered successfully

Congestion goes down

8

• Signals:
• Packets from the last congestion window are delivered successfully

• Additive Increase and Why

Congestion goes down

8

• Signals:
• Packets from the last congestion window are delivered successfully

• Additive Increase and Why
• Gradually approach the equal bandwidth share offered by the network
• The addition enables fairness guarantees implicitly
• No exponential increase since the slow start has found the max in
• Congestion Window = Congestion Window + Parameter

Discussion

9

• Parameter selection is hard
• People sometimes use the fluid model to find out the optimal ones

• The congestion control should converge to the optimal point.
• AIMD can, but takes several rounds.

• An ideal AIMD algorithm
• Efficiency, fairness, convergence, and distributeness

Some References

10

11

Fast Retransmit

• Use out-of-order ACKs effectively

• Three duplicated ACKs
• Resend the same acknowledgment to the first missing segment
• Streamline the implementation

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10Good

Bad

12

Fast Recovery

• Slow start probing is unnecessary under duplicated ACKs

• Adjust the Congestion Window to the Congestion Threshold
• Congestion window = congestion threshold

13

Improve the Congestion Control “Round”

• What is round?
• A round is the time it takes to send all data within the congestion window
and receive the corresponding ACKs

• So round is a dynamic epoch

• Make congestion control to react on each ACK
• Reacting at the round granularity is slow
• An ACK indicates there is room to send data

Combine Everything Together

14

• Congestion control is a window adjustment algorithm
• #1: Reaction point (RP) or sender
• #2: Congestion point (CP) or switch/router
• #3: Notification Point (NP) or receiver

Combine Everything Together

14

• Congestion control is a window adjustment algorithm
• #1: Reaction point (RP) or sender
• #2: Congestion point (CP) or switch/router
• #3: Notification Point (NP) or receiver Issue implicit feedbacks}

} Adjust window

Combine Everything Together

14

• Congestion control is a window adjustment algorithm
• #1: Reaction point (RP) or sender
• #2: Congestion point (CP) or switch/router
• #3: Notification Point (NP) or receiver Issue implicit feedbacks}

} Adjust window

• TCP Reno
• One of many congestion control algorithms
• #1: Slow start
• #2: AIMD
• #3: Fast retransmit/recovery
• #4: Per-ACK adjustment

Issue #1: Silly Window Syndrome

15

Sender Receiver

MSS MSS

MSS MSS

Data

ACKs

Issue #1: Silly Window Syndrome

15

Sender Receiver

Sender Receiver

MSS MSS

MSS MSS

Data

ACKs

<MSS MSS

MSS <MSS

Data

ACKs

Issue #1: Silly Window Syndrome

15

Sender Receiver

Sender Receiver

MSS MSS

MSS MSS

Data

ACKs

<MSS MSS

MSS <MSS

Data

ACKs

 Problem:

• Wait too long, hurt latency

• Wait too short, hurt bandwidth

Solution: Nagle’s Algorithm

16

• A self-clocking solution
• As long as TCP has any data in flight, the sender will eventually receive
an ACK

• TCP_NODELAY option

Issue #2: Timeout Setup during Retransmission

17

• Degenerate case
• Do not sample RTT when retransmitting

18

Karn/Partridge Algorithm for RTO

• Set the next RTO to be 2x RTO_last after each retransmission
• Exponential backoff is a well-known control theory method
• Loss is mostly likely caused by congestion

Issue #3: Retransmitted Segments

• What segments are retransmitted under a timeout?
• Option #1: all segments subsequently after the missing one (pessimistic)
• Option #2: just the missing one (optimistic)

19

Issue #3: Retransmitted Segments

• What segments are retransmitted under a timeout?
• Option #1: all segments subsequently after the missing one (pessimistic)
• Option #2: just the missing one (optimistic)

19

• Solution: selective acknowledgment
• The receiver uses optional fields to acknowledge the missing ones
• SACK option

Issue #3: Retransmitted Segments

• What segments are retransmitted under a timeout?
• Option #1: all segments subsequently after the missing one (pessimistic)
• Option #2: just the missing one (optimistic)

19

• Selective acknowledgment
• The receiver uses optional fields to acknowledge the missing ones
• SACK option

Tell the sender what segments have been arrived

20

TCP SACK

• Same congestion control mechanisms as TCP Reno
• Uses TCP options fields
• Timeouts are still used

• Tell the sender which segments are received upon out-of-order
• Enable the sender to maintain an image of the receiver’s queue

• The sender resends all missing segments without timeout
• Don’t send beyond the congestion window
• Send new data when no old data needs to be resent

21

How does TCP solve the third issue?

• #1: Arbitrary communication
• Senders and receivers can talk to each other in any ways

• #2: No reliability guarantee
• Packets can be lost/duplicated/reordered during transmission
• A checksum is not enough

• #3: No resource management
• Each channel works as an exclusive network resource owner
• No adaptive support for the physical networks and applications

Summary

• Today
• TCP congestion control (II)

• Next lecture
• TCP in-network support

22

