TCP Congestion
Control (l1)

Ming Liu
mgliu@cs.wisc.edu

https://pages.cs.wisc.edu/~mgliu/CS640/S25/index.html

Outline

o | ast
* TCP Congestion Control (I)

* Today
* TCP Congestion Control (ll)

e Announcements

* No class this Thursday (04/17)
* Lab 4 due date 05/01/2025 12:01PM

Recap: UDP Issues

* #3: NO resource management
* Each channel works as an exclusive network resource owner
* No adaptive support for the physical networks and applications

TCP Slow Start

* Determine the available networking capacity exponentially
* At round I, probe the congestion window with 27(i-1) segments

Source Destination

W\

y
'
\
)

\
,ozo
i
\

AV

TCP Slow Start

* Determine the available networking capacity exponentially
* At round I, probe the congestion window with 27(i-1) segments

Source Destination

\

N =

Not efficient

|
|
i

o‘:‘
)

,o
“ 0
AN

The goal of TCP congestion control:

Effectively use the networking resources

» Utilization: each networking hardware is fully utilized
» Fairness: each networking hardware is equally shared

Running Phase Bandwidth Agjustment: AIMD

* Adjust the window for fairness and high utilization

* Additive Increase/Multiplicative Decrease
* Additive increase CongestionWindow when the congestion goes down
* Multiplicate decrease CongestionWindow when the congestion goes up

Congestion goes up

 Signals:
e Packet loss
e OQut-of-order ACK

Congestion goes up
 Signals:

e Packet loss
e OQut-of-order ACK

* Multiplicative Decrease and Why

Congestion goes up

 Signals:
e Packet loss
e OQut-of-order ACK

* Multiplicative Decrease and Why
* Quickly shrink the congestion window to avoid congestion collapse
* Reduce to 1 segment under heavy contention => packet loss
* Reduce to >1 segment under light contention => out-of-order ACK
» Congestion Window = Congestion Window X Parameter

Congestion goes down

 Signals:
* Packets from the last congestion window are delivered successfully

Congestion goes down

 Signals:
* Packets from the last congestion window are delivered successfully

* Additive Increase and Why

Congestion goes down

 Signals:
* Packets from the last congestion window are delivered successfully

* Additive Increase and Why
* Gradually approach the equal bandwidth share offered by the network
* The addition enables fairness guarantees implicitly
* No exponential increase since the slow start has found the max in
* Congestion Window = Congestion Window + Parameter

Discussion

 Parameter selection is hard
* People sometimes use the fluid model to find out the optimal ones

* The congestion control should converge to the optimal point.
* AIMD can, but takes several rounds.

<! | Fairness Line ,~
/

S | N
© /7 | |
o | R Optimal Point
Q '/‘/
<_E 1 ’ o _
o | R Efficiency Line
. - /7
8 | /// /
D y

V4

Va | | | | | Jl

I | | | |
User 1 Allocation X,

Some References

* An ideal AIMD algorithm

* Efficiency, fairness, convergence, and distributeness

Analysis of the Increase and Decrease
Algorithms for Congestion Avoidance

in Computer Networks

Dah-Ming CHIU and Raj JAIN
Digital Equipment Corporation, 550 King Sireet (LKG1-2 /A19),
Littleton, MA 01460-1289, U.S.A.

New Address: Raj Jain, Washington University in Saint Louis, .

\ jain@cse.wusth.edu, hitp://www.cse.wustl.edu/~ jain ’

Abstract. Congestion avoidance mechanisms allow a network
to operate in the optimal region of low delay and high
throughput, thereby, preventing the network from becoming
congested. Thas is different from the traditional congestion
control mechanisms that allow the network to recover from the

f L 1+ 3 % _ 3 Y_ WY .Y . . ™_L ..

1. Introduction

1.1. Background

Congestion in computer networks 1s becoming
an imporiant issue due to the increasing mismatch
in link speeds caused by intermixing of old and
new technology. Recent technological advances

10

Fast Retransmit

» Use out-of-order ACKs effectively

* Three duplicated ACKs

* Resend the same acknowledgment to the first missing segment
» Streamline the implementation

Good [1][2][s][«][s][e][z][s][e][1o]
Bad (] [] s] X o] [X] [X] [e] [o] 3]

4

11

Fast Recovery

» Slow start probing is unnecessary under duplicated ACKs

» Adjust the Congestion Window to the Congestion Threshold
* Congestion window = congestion threshold

12

Improve the Congestion Control “Round”

* What is round?
* Around is the time it takes to send all data within the congestion window
and receive the corresponding ACKs
* SO round is a dynamic epoch

* Make congestion control to react on each ACK
* Reacting at the round granularity is slow
* An ACK indicates there is room to send data

13

Combine Everything Together

» Congestion control is a window adjustment algorithm
* #1: Reaction point (RP) or sender
» #2: Congestion point (CP) or switch/router
* #3. Notification Point (NP) or receiver

14

Combine Everything Together

» Congestion control is a window adjustment algorithm
« #1: Reaction point (RP) or sender } Adjust window
» #2: Congestion point (CP) or switch/router

- #3: Notification Point (NP) or receiver } Issue implicit teedbacks

14

Combine Everything Together

» Congestion control is a window adjustment algorithm
« #1: Reaction point (RP) or sender } Adjust window
» #2: Congestion point (CP) or switch/router

- #3: Notification Point (NP) or receiver } Issue implicit teedbacks

* TCP Reno

* One of many congestion control algorithms
* #1: Slow start

e #2: AIMD

* #3: Fast retransmit/recovery

* #4. Per-ACK adjustment

14

Issue #1: Silly Window Syndrome

SwmssT [IMSST Data

15

Issue #1: Silly Window Syndrome

SwmssT [IMSST Data
mss

15

Issue #1: Silly Window Syndrome

MSS MSS Data
e ————————————— :
— e .
ACKs MSS MSS

| PrOblem:
« Wait too long, hurt latency
 Wait too short, hurt bandwidth

15

Solution: Nagle’s Algorithm

* A self-clocking solution

* As long as TCP has any data in flight, the sender will eventually receive
an ACK

« TCP_NODELAY option

— —— S — e e — = E— __ —

When the application produces data to send
if both the available data and the window > MSS
send a full segment
else
if there is unACKed data in flight |
buffer the new data until an ACK arrives
else)
send all the new data now

i\

16

Issue #2: Timeout Setup during Retransmission

* Degenerate case
* Do not sample RTT when retransmitting

Sender Receiver Sender Receiver

SampleR T1
SampleR T1

17

Karn/Partridge Algorithm for RTO

e Set the next RTO to be 2x RTO_last after each retransmission
* Exponential backoff is a well-known control theory method
* Loss Is mostly likely caused by congestion

Sender Receiver Sender Receiver

SampleR T1

SampleR T1

18

Issue #3: Retransmitted Segments

* What segments are retransmitted under a timeout?
* Option #1: all segments subsequently after the missing one (pessimistic)
» Option #2: just the missing one (optimistic)

19

Issue #3: Retransmitted Segments

* What segments are retransmitted under a timeout?
* Option #1: all segments subsequently after the missing one (pessimistic)
» Option #2: just the missing one (optimistic)

» Solution: selective acknowledgment

* The receiver uses optional fields to acknowledge the missing ones
* SACK option

19

i

|

L _ _ —

Issue #3: Retransmitted Segments

* What segments are retransmitted under a timeout?
* Option #1: all segments subsequently after the missing one (pessimistic)
» Option #2: just the missing one (optimistic)

» Selective acknowledgment

* The receiver uses optional fields to acknowledge the missing ones
* SACK option

19

TCP SACK

» Same congestion control mechanisms as TCP Reno
* Uses TCP options fields
* Timeouts are still used

* Tell the sender which segments are received upon out-of-order
* Enable the sender to maintain an image of the receiver’s queue

* The sender resends all missing segments without timeout
* Don’t send beyond the congestion window
* Send new data when no old data needs to be resent

20

How does TCP solve the third issue?

* #3: No resource management
 Each channel works as an exclusive network resource owner
* No adaptive support for the physical networks and applications

v

21

* Today
* TCP congestion control (Il)

* Next lecture
* TCP in-network support

Summary

22

