In-Network Support for
TCP

Ming Liu
mgliu@cs.wisc.edu

https://pages.cs.wisc.edu/~mgliu/CS640/S25/index.html

Outline

o | ast
* TCP Congestion Control (ll)

* Joday
* In-Network Support for TCP

e Announcements

* Quiz 4 in-class this Thursday (04/24)
* Lab 4 due date 05/01/2025 12:01PM

TCP Congestion Control

» Congestion control is a window adjustment algorithm
* #1: Reaction point (RP) or sender } Adjust window
» #2: Congestion point (CP) or switch/router

- #3: Notification Point (NP) or receiver } Issue implicit teedbacks

* TCP Reno
* One of many congestion control algorithms
* #1: Slow start
» #2: AIMD

* #3: Fast retransmit/recovery
* #4. Per-ACK adjustment

TCP Congestion Control

» Congestion control is a window adjustment algorithm
* #1: Reaction point (RP) or sender } Adjust window
» #2: Congestion point (CP) or switch/router

- #3: Notification Point (NP) or receiver } Issue implicit teedbacks

—— - - ——— . ———————————— ————— ——— —— — —— E— —

However, TCP congestion control relies on heuristic
signals and views the network as a black box.

. #4: Per-ACK adjustment

TCP Congestion Control

» Congestion control is a window adjustment algorithm
* #1: Reaction point (RP) or sender } Adjust window
» #2: Congestion point (CP) or switch/router

- #3: Notification Point (NP) or receiver } Issue implicit teedbacks

S — - - e e — — — _ — __ —— [— E— — —

If the network provides some support, can we improve
the algorithm’s efficiency?

. #4: Per-ACK adjustment

#1: In-Network Resource Management

* Divide up resources among contending entities
* Resources: network bandwidth and router/switch buffer space
* Entities: transport flow, represented as five tuples

#1: In-Network Resource Management

* Divide up resources among contending entities
* Resources: network bandwidth and router/switch buffer space
* Entities: transport flow, represented as five tuples

» Congestion control is also an example of resource allocation
* Run at the end-host
* Run in a distributed manner without central coordination
* Bandwidth = congestion window size / RTT

#1: In-Network Resource Management

|
‘
|

-
Congestion control is a host-based, feedback-based distributed
resource allocation scheme.

___ _ —

» Congestion control is also an example of resource allocation
* Run at the end-host
* Run in a distributed manner without central coordination
* Bandwidth = congestion window size / RTT

#1: In-Network Resource Management

Congestion control is a host-based, feedback-based distributed
resource allocation scheme.

___ _

* Run at the end host

‘ -) —a
Congestion control is a router-assisted, host-based, feedback-
based distributed resource allocation scheme.]

___ __

Active Queue Management (AQM)

* An “active” router/switch queue management
e Facilitate better flow behavior under resource contention

Routing
processor

[—————

Routing, management
control plane (software)

|
|
|
|
______________________ +|__________ S ‘S . S S ' g—, " p— " p— S S S’ S S—' g, —" p—" " pa—'—" ga— ! g S S Sm—" s— —
Forwarding |
data plane (hardware) :
|
Input port I Output port
\ 4
N[|+ - 11111} R - —\
; [LIT1T1]
| Switch
Input port | fabric Output port
v [IT1T1]
“ —[] (11T o N

Active Queue Management (AQM)

* An “active” router/switch queue management
e Facilitate better flow behavior under resource contention

Routing
, - processor
Routing, management |
control plane (software) { t
Forwarding :
data plane (hardware) ’
|
. Inputport /{-\ __ Outputport _ _
1 . U i
Two queueing disciplines |

- Scheduling: which packets to determine on the dequeue side l
 Dropping: which packets to drop on the enqueue side)

— — e — —— = — — = — e — e . — = R — = — - ——— —_— e =

Understanding Queueing

* Why queue build up?

Understanding Queueing

* Why queue build up?
* Enqueuing rate > Dequeue rate

Understanding Queueing

* Why queue build up?
* Enqueuing rate > Dequeue rate

* Why does queueing matter?

Understanding Queueing

* Why queue build up?
* Enqueuing rate > Dequeue rate

* Why does queueing matter?
* Bandwidth: which packet to serve (transmit) next
» Buffer space: which packet to drop next (when required)

Understanding Queueing

* Why queue build up?
* Enqueuing rate > Dequeue rate

* Why does queueing matter?
* Bandwidth: which packet to serve (transmit) next
» Buffer space: which packet to drop next (when required)

* Why does queueing impact performance?

Understanding Queueing

* Why queue build up?
* Enqueuing rate > Dequeue rate

* Why does queueing matter?
* Bandwidth: which packet to serve (transmit) next
» Buffer space: which packet to drop next (when required)

* Why does queueing impact performance?
* Queueing kicks in under contention
* Scheduling a packet of flow | = allocate bandwidth for flow |
* Dropping a packet from flow | = deallocate bandwidth for flow |

The Naive (But Widely-used) Approach

» Scheduling discipline: FIFO (first-in-first-out)
* Dequeue packets based on the arrival order, not the flow priority

* Dropping discipline: Drop-Tall
* Drop any packets when the queue is full, regardless of the flow priority

The Issues

* #1: Lock-out problem
* A few flows can easily monopolize the queue space
* L ack of traffic isolation

e #2: Full queues

* Make TCP adjust rates based on timeout
* One might always observe bursty loss

In-network resource management: effectively use

the router buffer under high network load

» Divide the buffer space equally among ongoing flows
» Notify the end hosts early to avoid bursty packet drops

In-network resource management: effectively use

the router buffer under high network load

» Divide the buffer space equally among ongoing flows
» Notify the end hosts early to avoid bursty packet drops

Three techniques:
» #1: Fair Queueing (FQ)
- #2: Random Early Detection (RED)
» #3: Explicit Congestion Notification (ECN)

Technique #1: Fair Queueing

» Goal: allocate resources “fairly”
* Keep an individual (virtual) queue for each flow

* [solate ill-behaved users
* The router does not send explicit feedback to the end-host
* End-hosts still need an end-to-end congestion control

10

Max-Min Fairness

* A fair allocation scheme between demands and supplies
* Allocate the user with a “small” demand that it requires
* Evenly distribute unused resources to “big” users

11

Max-Min Fairness

* A fair allocation scheme between demands and supplies
* Allocate the user with a “small” demand that it requires
* Evenly distribute unused resources to “big” users

* Formally,
* Resource allocated in terms of increasing demand
* No sources get a resource share larger than its demands
* Sources with unsatisfied demands get an equal share of the resources

11

Implementing Max-Min Fairness

* Generalized processor sharing
* Fluid fairness
* Bitwise round-robin among all queues

* Why not a simple round-robin?
* Variable packet length: Larger packets receive higher bandwidth
* Unfalir for instantaneous service rates
* What if new packets arrive just before/after the packet departs?

12

Bit-by-bit Round Robin

» Single flow: the clock ticks when a bit is transmitted. For packet i:
* Pi = length (packet), Ai = arrive time
* Si = begin transmit time, Fi = finish transmit time
e Fi = Si + Pi = max (F(i-1), Ai) + Pi

* Multiple flows: clock ticks when a bit from all active flows is

transmitted, defined as the round number
» Can calculate Fi for a packet if the number of flows is known at all times

13

Fair Queueing Mechansim

* Mapping the bit-by-bit round-robin schedule onto transmission

* Transmit packet with the lowest Fi at any given time

) Flow 1 ‘ ‘ ‘ \
7
Flow 2 \'\\
\\

O/P

14

Technique #2: Random Early Detection (RED)

* Key idea: detect incipient congestion

* Assume hosts respond to lost packets
* Compliant congestion control

15

RED Algorithm

* Maintain a running average of queue length

» Case #1: if avg <= min_threshold, do nothing
* Low queueing, send packets through

» Case #2: if avg >= max_threshold, drop packet
* Protect from misbehaving sources

e Case #3: if min_threshold< avg < max_threshold, randomly drop
 Calculate the probability P and drop the arriving packet with P
* Notify the source that congestion is going to happen

16

RED Discussion

 Compute the average queue length (EWMA)
* AvgLen = (1-weight) * AvgLen + weight * SampleLen, O< weight <1
« SamplelLen is the queue length each time a packet arrives

* Probability P calculation
* TempP = MaxP * (AvgLen - min_threshold) / (max_threshold -
min_threshold)
* P =TempP / (1-count * tempP)
* Count = the number of newly arriving packets, while AvgLen stays
between two thresholds (P increases with the count)

17

RED Discussion

 Compute the average queue length (EWMA)
* AvgLen = (1-weight) * AvgLen + weight * SampleLen, O< weight <1
« SamplelLen is the queue length each time a packet arrives

~ * Probability P calculation e

Drop probability is a function of both AvglLen and how long it has been since the last drop

 TempP tracks how many newly arriving packets have been queued while AvglLen is
between thresholds

« Count is the number of packets since the last drop

» This prevents clusters of drops

17

RED Operation

* RED is good at keeping average queue length steady

Max thresh Min thresh
p(drop) Average Queue Length
10 |-
maxp /

ming, MaXh Avg queue length

Technique #3: Explicit Congestion Notification (ECN)

* ECN allows end-to-end notification of network congestion
* Sending path: An ECN-aware router may set a marker in the |IP header
instead of dropping a packet in order to signal impending congestion when
the queue gets full
* Receiving path: The receiver echos the congestion indication to the
sender so that it can reduce the transmission rate

19

Technique #3: Explicit Congestion Notification (ECN)

* ECN allows end-to-end notification of network congestion
* Sending path: An ECN-aware router may set a marker in the |IP header
instead of dropping a packet in order to signal impending congestion when
the queue gets full
* Receiving path: The receiver echos the congestion indication to the
sender so that it can reduce the transmission rate

- & &

Sender R1 w/ ECN R2 w/ ECN R3 w/ ECN Receiver

19

Technique #3: Explicit Congestion Notification (ECN)

* ECN allows end-to-end notification of network congestion
* Sending path: An ECN-aware router may set a marker in the |IP header
instead of dropping a packet in order to signal impending congestion when
the queue gets full
* Receiving path: The receiver echos the congestion indication to the
sender so that it can reduce the transmission rate

- & &

Sender R1 w/ ECN R2 w/ ECN R3 w/ ECN Receiver

19

Technique #3: Explicit Congestion Notification (ECN)

* ECN allows end-to-end notification of network congestion
* Sending path: An ECN-aware router may set a marker in the |IP header
instead of dropping a packet in order to signal impending congestion when
the queue gets full
* Receiving path: The receiver echos the congestion indication to the
sender so that it can reduce the transmission rate

- & &

Sender R1 w/ ECN R2 w/ ECN R3 w/ ECN Receiver

19

ECNiIn IP

* The two least significant bits in the traffic class field
* 00 —> Non ECN-Capable Transport
* 10/01 —> ECN Capable Transport
* 11 —> Congestion Encountered

0 4 8, — 16
HLen | | |

19 31

Version | Length

ldent Offset

Tk Protocol Checksum
SourceAddr
DestinationAddr
Pad

Options (variable)

(variable)

Data
S /\\v/ \ y \//\\/ \/’/ e — \/ o \//\ _
/\\//\ 4

#2: Reliable Link Layer

* Packets are successfully delivered to the receiver
* No packet drops
* No packet duplications
* No out-of-order delivery

L2 Reliable Transmission

21

#2: Reliable Link Layer

* Packets are successfully delivered to the receiver
* No packet drops
* No packet duplications
* No out-of-order delivery

|

21

TCP Congestion Control under Reliable Link Layer

» Can we see packet drops?

22

TCP Congestion Control under Reliable Link Layer

» Can we see packet drops?
* Yes, but rarely happens, due to bit flips, etc.
* But this does not indicate a network congestion

22

TCP Congestion Control under Reliable Link Layer

» Can we see packet drops?
* Yes, but rarely happens, due to bit flips, etc.
* But this does not indicate a network congestion

» Can we see packet duplication?

22

TCP Congestion Control under Reliable Link Layer

» Can we see packet drops?
* Yes, but rarely happens, due to bit flips, etc.
* But this does not indicate a network congestion

» Can we see packet duplication?
* Yes, because the sender still needs to retransmit under failures

22

TCP Congestion Control under Reliable Link Layer

» Can we see packet drops?
* Yes, but rarely happens, due to bit flips, etc.
* But this does not indicate a network congestion

» Can we see packet duplication?
* Yes, because the sender still needs to retransmit under failures

» Can we see out-of-order delivery?

22

TCP Congestion Control under Reliable Link Layer

» Can we see packet drops?
* Yes, but rarely happens, due to bit flips, etc.
* But this does not indicate a network congestion

» Can we see packet duplication?

e —

S0, nothing changes?

* Yes, because the sender still needs to retransmit under failures

22

Congestion Control Enhancement

* #1: Implicit feedback —> Explicit feedback
* No ACKs or NACKSs indicate packets are dropped, so retransmitting

o #2: Explicit per-packet RTT
* The value of RTT tells you the network condition

* #3. The following are still required, but not triggered frequently
* Bandwidth probing
* Flow control
* Window adjustment

23

Congestion Control Enhancement

* #1: Implicit feedback —> EXxplicit feedback
* No ACKs or NACKSs indicate packets are dropped, so retransmiting

o #2: Explicit per-packet RTT
* The value of RTT tells you the network condition

— ___ — —

Your processor spends more cycles on application
logics instead of doing TCP processing.
=> high communication and application performance

_— _

23

#3: Active Network

* A grant proposal that allows packets to carry programs
* On-path entities can execute the logic

Towards an Active Network Architecture

David L. Tennenhouse and David J. Wetherall®
Telemedia, Networks and Systems Group, MIT

ABSTRACT

Active networks allow their users to inject
customized programs into the nodes of the network. An
extreme case, in which we are most interested, replaces
packets with “capsules” — program fragments that are
executed at each network router/switch they traverse.

Active architectures permit a massive increase in the
sophistication of the computation that is performed
within the network. They will enable new applications,
especially those based on application-specific multicast,
information fusion, and other services that leverage
network-based computation and storage. Furthermore,
they will accelerate the pace of innovation by
decoupling network services from the underlying
hardware and allowing new services to be loaded into
the infrastructure on demand.

In this paper, we describe our vision of an active
network architecture, outline our approach to its design,
and survey the technologies that can be brought to bear
on its implementation. We propose that the research
community mount a joint effort to develop and deploy a
wide area ActiveNet.

1. INTRODUCTION

Traditional data networks passively transport bits
from one end system to another. Ideally, the user data
is transferred opaquely, i.e., the network is insensitive
to the bits it carries and they are transferred between
end systems without modification. The role of
computation within such networks is extremely limited,
e.g., header processing in packet-switched networks
and signaling in connection-oriented networks.

Active Networks break with tradition by allowing
the network to perform customized computations on the
user data. For example, a user of an active network
could send a customized compression program to a
node within the network (e.g., a router) and request that

tha nada avannta that aracram whan neacaccinae thaie

particularly interesting, replaces the passive packets of
present day architectures with active “capsules” —
miniature programs that are executed at each router
they traverse. This change in architectural perspective,
from passive packets to active capsules,
simultaneously addresses both of the “active”
properties described above. User data can be
embedded within these mini-programs, in much the
way a page’s contents are embedded within a fragment
of PostScript code. Furthermore, capsules can invoke
pre-defined program methods or plant new ones within
network nodes.

Our work is motivated by both technology “push”
and user “pull”. The technology “push” is the
emergence of “active” technologies, compiled and
interpreted, supporting the encapsulation, transfer,
interposition, and safe and efficient execution of
program fragments. Today, active technologies are
applied within individual end systems and above the
end-to-end network layer; for example, to allow Web
servers and clients to exchange program fragments.
Our innovation is to leverage and extend these
technologies for use within the network — in ways that
will fundamentally change today’s model of what is
“in” the network.

The “pull” comes from the ad hoc collection of
firewalls, Web proxies, multicast routers, mobile
proxies, video gateways, etc. that perform user-driven
computation at nodes “within” the network. Despite
architectural injunctions against them, these nodes are
flourishing, suggesting user and management demand
for their services. We are developing the architectural
support and common programming platforms to support
the diversity and dynamic deployment requirements of
these “interposed” services. Our goal is to replace the
numerous ad hoc approaches to their implementation
with a generic capability that allows users to program
their networks.

There are three princinal advantages to basing the

24

Programmable Networks

* Programmable switch
* Reconfigurable match-action tables, registers, and TCAMs
* £.9., Cavium/Marvell (ceased in 2018), Barefoot/Intel (ceased in 2023),
Mellanox/NVIDIA Spectrum, and Juniper Trio

« SmartNIC
* NICs with general-purpose processors, domain-specific accelerators,
programmable DMA engines, and SRAM/DRAM
* E.g., AWS Nitro solution, Pensando/AMD DSC, NVIDIA BlueField (heavily

deployed in the xAl Colossus cluster), Intel/Google Mount Evans,
Microsoft FPGA (and/or Fungible DPU)

25

* Joday
* TCP in-network support

e Next lecture
e Linux NStack

Summary

26

