Framing and Error
HMandling

Ming Liu
mgliu@cs.wisc.edu

https://pages.cs.wisc.edu/~mgliu/CS640/S25/index.html

Outline

o | ast
* Encoding

* Today
* Framing and Error Handling

e Announcements
* Lab1 due on Feb 11th 11:59pm

Reliable Bitstream Transmission @Physical Layer

000101011110010010101010101

Sender Recelver

Recap: Data as Packet

* A packet is the smallest unit of data that traverses the network
* Consist of header and payload
* The sender divides data and encapsulates them as packets
* The receiver decapsulates packets and rebuilds the data

000101011110010010101010101

Sender Recelver

Recap: Data Encapsulation across Layers

Application Layer

Sender Recelver

Recap: Data Encapsulation across Layers

Physical Layer

Sender Recelver

Recap: Data Encapsulation across Layers

Message

Ht Datagram

t m Segment
t m HI Frame *

000101011110010010101010101 Bits

L

L

Sender Recelver

How can we identify a frame from bit
streams?

Why is it hard?

* One should correctly identify the start and end of a frame
* Easily be hidden from data bits

* A frame has a variable length
* Only the maximum length is fixed

Technique #1: Byte Stuffing

 Mark the frame with special characters

* Used by the Binary Synchronous Communication protocol (BISYNC)
* |IBM invented it in 1967 for its mainframes, e.g., System/360

Z2|Z | X O

G a 8 Header E &

Start of header l
Checksum

Synchronization

Start of text End of text

Can we send this data?

| SYN

SYN
SOH

Header

SYN

SOH

Handle Special Characters

* Use an escape character (DLE)
* SYN = DLE + SYN

SYN
SOH

Header

| SYN
SYN
SOH

Technique #2: Byte Counting

* Encode the number of bytes into a frame

» Used by the Digital Data Communication Message Protocol (DDCMP)
* DEC invented it in 1974 for its DECnet

Z\|Z | % $)
>| > é Count | Header &
l Checksum
Frame type

Synchronization

11

Technique #2: Byte Counting

* Encode the number of bytes into a frame

» Used by the Digital Data Communication Message Protocol (DDCMP)
* DEC invented it in 1974 for its DECnet

- - _é
What happens if the counter field is corrupted?

Synchronization

SYN
SYN
Class

The Receiver Needs to Check Frame Integrity

e Check the checksum field first

ZlZ | a O
5.) 5; é Count | Header 6
l Checksum

Frame type

Synchronization

11

Technique #3: Bit Stuffing

* Mark the frame with special bit sequences

* Used by the High-Level Data Link Control protocol (HDLC)
* IBM invented it in the 1970s for its system network architecture

Beginning
Sequence

O
&

Ending
Sequence

12

How Bit Stuffing Works

* The sender and receiver agree on a special flag
* For example, 01111110

» Sender Logic: stuff the bitstream
* Insert a 0 before transmitting the next bit if transmitting 5 consecutive 1s

* Receiver Logic: unstuff the bitstream
* When receiving 5 consecutive 1s,
* |[f the next bit is 1, this is the frame marker or an error
* |[f the next bit is 0, remove it

13

An Exercise: Encoding + Framing

\
A sender and receiver use 4B/5B encoding and bit stuffing in their networking stacks. Suppos
(a) the maximum frame length is 512 bytes; (b) the agreed bit sequence is 01111110; (c) we use \
high and low signals. Please show how signals traverse across the wire when the sender sends
an “OK?” byte stream to the receiver. |

— —— — —— — — —— e ——— — — T — — T — — — - — . = J

DGTOd o Data *
1000 10010

O —> Ox4F —> 01001111
K —> 0x4B —> 01001011 |
? —>0x3F —>00111111

14

An Exercise: Encoding + Framing

*]
A sender and receiver use 4B/5B encoding and bit stuffing in their networking stacks. Suppos
(a) the maximum frame length is 512 bytes; (b) the agreed bit sequence is 01111110; (c) we use ‘

'high and low signals. Please show how signals traverse across the wire when the sender sends
an “OK?” byte stream to the receiver.

= = = = —

f' Da’rCode DaTa Code
o - | 0000] 11110 1000 10010
O —> Ox4F —> 01001111 : 0001| 01001 1001 | 10011
'K —> OX4B —> 01001011 w 0010 10100 1010 10110 ,

When the number of bits is less than 4, we should pad

the data with leading zeros to complete a 4-bit block.
| 0111 | 01111 1111 | 11101 ﬂ

14

How do we handle frame errors?

15

How do we handle frame errors?

Data redundancy!

15

Technique #1: Parity Bit

* Even parity
* Append a parity bit to 7 bits of data to make an even number of 1’s
» Odd parity is defined accordingly

1010100
1010101 n

16

Technique #1: Parity Bit

* Even parity
* Append a parity bit to 7 bits of data to make an even number of 1’s
» Odd parity is defined accordingly

1010100
1010101 n

» Limitations
i

* 1 In 8 bits of overheads

* Can only detect a single error 1000010

16

Technique #2: 2-D Parity

* Apply parity bit across two dimensions
* Take the even parity as an example

Bitstream

of a frame: 01101001011010001011011101011001011

17

How 2-D Parity Works

» Step 1: divide the bitstream into a sequence of 7-bit blocks

0110100 1011010 0010110 1110101 1001011
0110100

1011010
0010110
1110101

1001011

18

How 2-D Parity Works

» Step 1: divide the bitstream into a sequence of 7-bit blocks
» Step 2: make each byte even parity

0110100 1011010 0010110 1110101 1001011
0110100

1011010

0010110

1110101

1001011

18

How 2-D Parity Works

» Step 1: divide the bitstream into a sequence of 7-bit blocks
» Step 2: make each byte even parity

0110100 1011010 0010110 1110101 1001011

0110100

1011010

0010110

1110101

1001011

18

How 2-D Parity Works

» Step 1: divide the bitstream into a sequence of 7-bit blocks
» Step 2: make each byte even parity
» Step 3: add a parity byte for all bytes of the packet

0110100 1011010 0010110 1110101 1001011

0110100

1011010

0010110

1110101

1001011

1000110

18

How 2-D Parity Works

» Step 1: divide the bitstream into a sequence of 7-bit blocks
» Step 2: make each byte even parity
» Step 3: add a parity byte for all bytes of the packet

0110100 1011010 0010110 1110101 1001011

[oron] @
[] [

1000110

18

2-D Parity Capabillities

e An 1-bit error can be detected and corrected

—

0110100

1011010

error bit 0000110 Il «<— 0odd number of 1°s

1110101

1001011

1000110

19

2-D Parity Capabillities

e An 1-bit error can be detected and corrected
e A 2-bit error can be detected

0110100

1011010

Same row 0000111

1110101
1001011

1000110 1
\ odd number of 1's

19

2-D Parity Capabillities

* An 1-bit error can be detected and corrected

* A 2-bit error can be detected
0110100
1011010

Same column | 0000110

1100101

1 \
T~ odd number of 1’s
1001011

1000110

19

2-D Parity Capabillities

e An 1-bit error can be detected and corrected
e A 2-bit error can be detected

0110100

1011010

Different row
and column

0000110

1110001 1

1001011 n

1000110

\ odd number of 1's

19

Technique #3: Internet Checksum

* Checksum = add up all the words of a frame

* Ones complement arithmetic
* 1101 + 1001 = 0111

 Workflow

* #1: The sender divides the frame into a sequence of 16-bit data words
* #2:. The sender calculates the checksum and attaches it to the frame

* #3: The receiver receives the frame and performs the same calculation
* #4. The receiver performs one more calculation to figure out if its valid

20

Bytestream
of a frame:

OOFE

+ (G523

An Example

OOFE C523 FDA1 DG68A AF02

|

21

Bytestream
of a frame:

OOFE

+ (G523

C621

An Example

OOFE C523 FDA1 DG68A AF02

|

21

Bytestream
of a frame:

OOFE

+ (G523

C621

C3C3

An Example

OOFE C523 FDA1 DG68A AF02

|

+ FDAT

21

Bytestream
of a frame:

OOFE

+ (G523

C621

C3C3

9A4E

An Example

OOFE C523 FDA1 DG68A AF02

|

+ FDAT

+ DG8A

21

Bytestream
of a frame:

OOFE
C523

C621

FDAT

DG68A

4951

An Example

OOFE C523 FDA1 DG68A AF02

|

C3C3

9A4E
AF02

21

Bytestream
of a frame:

OOFE
C523

C621

FDAT

DG68A

4951

An Example

OOFE C523 FDA1 DG68A AF02 BGAE

|

C3C3

9A4E
AF02

— X BOAE
One’s complement
Bitwise NOT

21

Internet Checksum Discussion

» Simple but not robust
* 16 redundant bits for the whole frame
* Easy to implement in the software
» Concurrent errors without hurting the sum cannot be detected

22

Other Techniques

» Cyclic Redundancy Check (CRC)

* Widely used codes with error detection properties
* Ethernet frame check sequence (CRC-32)
» Hardware friendly: K-bit shift registers and XOR gates

* High-level ideas
* #1: View an (n+1)-bit frame as an n-degree polynomial M(x)
* #2:. The sender and receiver agree on the same divisor polynomial C(x)
* #3: Error detection is performed by polynomial arithmetics

23

* Joday

* Framing and Error Handling

* Next lecture
» |2 Switching

Summary

24

