Introduction to Computer Networks

Ethernet

https://pages.cs.wisc.edu/~mgliu/CS640/S25/index.html

Ming Liu mgliu@cs.wisc.edu

- Last
 - L2 Switching

- Today
 - Ethernet
- Announcements
 N/A

Outline

Ethernet Dominates Local Area Network (LAN)

- LAN connects computers within a limited area
 - Popular in residence, campus, and building
 - Great competition in the 1980s, e.g., token ring, FDDI, ATM, Ethernet

- Why Ethernet succeeds
 - #1: The first widely deployed high-speed LAN
 - #2: Simple and cheap
 - #3: Sustain a higher data rate for each version
 - #4: Ethernet hardware becomes commodity

Ethernet (1970s to mid-1990s)

- - Bus topology
 - All transmitted frames travel to and processed by all adapters connected to the bus

Design for multiple access over a shared physical medium

Ethernet (1970s to mid-1990s)

- Design for multiple access over a shared physical medium
 - Bus topology
 - All transmitted frames travel to and processed by all adapters connected to the bus

CSMA/CD Overview

- Key idea: access the channel in a "random" fashion

• When collisions occur, wait for a random interval and retransmit

CSMA/CD Overview

- Key idea: access the channel in a "random" fashion

- CSMA/CD Scheme:
 - #1: Carrier Sense (CS)
 - #2: Multiple Access (MA)
 - #3: Collision Detection (CD)

• When collisions occur, wait for a random interval and retransmit

#1: Carrier Sense (CS)

- - Idle or busy
 - We use "transmitter" here to describe the host that sends a frame

The transmitter senses the state of the communication carrier

#2: Multiple Access (MA)

- The transmitter sends the frame with a probability p when idle
 - No coordination
 - The device makes the decision at the beginning of each time slot
 - p is pre-determined

#3: Collision Detection (CD)

- Under collision, the transmitter aborts the communication, performs exponential back-off, and sends the frame again Postpone the transmission by an interval of T

 - The length of the interval *T* increases with every collision
 - $T = 2^{(i-1)} X$, where *i* is the number of retries
 - X was configured as 51.2us originally

Transceiver

Early Ethernet Standards

- Ethernet defines both the physical and link layers
 - 10BASE-T, 10BASE-2, 10BASE-5
- Naming
 - #1: "10" —> data rate: 10Mbps
 - Ethernet traffic
 - #3: Physical media itself
 - T \rightarrow Twisted-pair copper wires
 - 2 \rightarrow Thin coaxial cables
 - 5 —> Thick coaxial cables

• #2: BASE \rightarrow Baseband Ethernet, i.e., the physical layer only carries

Ethernet (mid-1990s to late-1990s)

- Ethernet is widely deployed at companies and universities • Bus topology —> Hub-based star topology

 - An Ethernet segment originally could support 500m at most
 - CSMA/CD is still needed

Network repeater

Network Hub

11

Ethernet Standards Envolving

- 100Mbps becomes widely used
 - Twisted-pair copper wires (100BASE-T)
 - Fiber optical (100BASE-FX, 100BASE-SX, 100BASE-BX)

sed BASE-T) 0BASE-SX, 100BASE-BX)

- Gigabit Ethernet
 - Ethernet switches are used and dominated

- More importantly, CSMA/CD is no longer needed
 - Hub-based star topology —> Switch-based star topology

 - Full-duplex mode —> No send-and-receive interference

Ethernet (Since 2000s)

• Full-duplex (send and receive happen simultaneously) device is common

Point-to-point communication —> Isolated communication domain

Rising Ethernet Data Rate

800GBASE is standardized

- QSFP-DD and QSFP-112 transceivers are available
- 1.6 Terabit Ethernet is under development

- Today
 - Ethernet

• Next lecture

Reliable communication at the link layer

Summary

