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Application Layer Application Layer

Transport Layer Transport Layer

Network Layer Network Layer

Link Layer Link Layer

Physical Layer Physical Layer

000101011110010010101010101 Bits

Sender Recelver



Reliable Transmission @Physical Layer

 Reliable transmission Is essential
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Reliable transmission Is not necessary In
the link layer!



Unreliable Link Layer

 Common errors
* Frames are corrupted during transmission
* Frames are dropped due to cable errors
* Frames are dropped due to the SW/HW failures at the switch



Unreliable Link Layer

 Common errors
* Frames are corrupted during transmission
* Frames are dropped due to cable errors
* Frames are dropped due to the SW/HW failures at the switch

» Best-effort transmission
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Unreliable Link Layer

 Common errors
* Frames are corrupted during transmission
* Frames are dropped due to cable errors
* Frames are dropped due to the SW/HW failures at the switch

e Best-effort transmission
* For example, Ethernet does not handle reliability
* Rely on the upper layer across the stack to take care

A reliable link layer can simplify the transport layer

design (we’ll discuss this later).



Why it Is hard to achieve reliable
transmission?
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A Reliable Transmission Example

Sender Receiver

Q1: How does the sender know if the receiver gets
the frame or not?
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A Reliable Transmission Example

Sender Receiver

The receiver must explicitly tell the sender a frame is
received — acknowledgment.
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A Reliable Transmission Example

Recelver

Sender

Q2: How does the sender differentiate concurrently
transmitted frames?



A Reliable Transmission Example
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Each in-flight frame and acknowledgment should be
labeled with a unique identifier.
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A Reliable Transmission Example

Sender Receiver

Q3: What happens if the sender doesn’t receive the
acknowledgment?
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' Frame dropped at the sending path
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A Reliable Transmission Example
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Acknowledgement frame dropped



A Reliable Transmission Example

Sender Receiver

The sender has to retransmit the frame sometime

l]ater — timeout.
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A Reliable Transmission Example

Recelver

Sender

Q4: What happens if a fast sender issues traffic to a

slow receiver?



A Reliable Transmission Example
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Q4: What happens if a fast sender issues traffic to a
slow receiver? —> Lot of drops




A Reliable Transmission Example
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The sender should operate at the rate that the
receiver can accept.




Reliable Transmission Consideration

* #1: Acknowledgement
* Notify the sender of the receipt of a frame from the receiver

e #2: Unique Frame ID
e Differentiate concurrent frame transmission

* #3. Timeout

* Emulate errors in a pragmatic way
* False negatives cannot be avoided, e.g., slow receiver

* #4: Pacing
* Reduce the number of unnecessary retransmissions
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How do we design a reliable transmission
mechanism?

11



Technique #1: Stop-and-Wait

» Key idea: 1 outstanding frame + ACK + Timeout

* Send the next frame only if the last one is successfully delivered
* When the timeout is singled, the sender issues another frame
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Technique #1: Stop-and-Wait

» Key idea: 1 outstanding frame + ACK + Timeout

* Send the next frame only if the last one is successfully delivered

* When the timeout is singled, the sender issues another frame
” N\

The sender might receive a duplicated

acknowledgment.

Timeout T [ _________
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Technique #1: Stop-and-Wait

» Key idea: 1 outstanding frame + ACK + Timeout

* Send the next frame only if the last one is successfully delivered
* When the timeout is singled, the sender issues another frame

* Discussion:
* Simple to implement
* Low performance — cannot fully utilize the bandwidth
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Technique #2: Concurrent Logical Channels

» Key idea: partition a physical link into multiple logical channels
* Each channel works independently
* Each channel can operate using the stop-and-wait or sliding window
mechanism (discussed next)
* Concurrent outstanding frames per link = Channel # X Concurrent
outstanding frames per channel
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Technique #2: Concurrent Logical Channels

» Key idea: partition a physical link into multiple logical channels
* Each channel works independently
* Each channel can operate using the stop-and-wait or sliding window
mechanism (discussed next)
* Concurrent outstanding frames per link = Channel # X Concurrent
outstanding frames per channel

* In practice:
e PCle: x1, x2, x4, x8, x16
* NVLInk: x16, x32, x64, x96, x128
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Technique #3: Sliding Window

» Key idea: keep the communication channel full with N

consecutive frames
* Driven by the bandwidth-delay product (BDP)
* Seems simple, but...

Sender Receiver

Time
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States Maintained by the Sender

« SWS: Send Window Size
* LAR: the sequence number of the last acknowledgment received
* LFS: the sequence number of the last frame sent

Sender Receiver

LFS-LAR <= SWS
1
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T T

LAR LFS
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States Maintained by the Receiver

« RWS: Receive Window Size
* LAF: the sequence number of the largest acceptable frame
* LFR: the sequence number of the last frame received

Sender Receiver
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Sender Logic — Sending a Frame

* Logic #1: send unacknowledged frames within the SWS
» Keep the invariant: LFS - LAR <= SWS

Sender Receiver

LFS-LAR <= SWS
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Sender Logic — Receiving an Acknowledgment

* Logic #2: receive acknowledgments from the receiver
* Only update LAR if the SegNum of the acknowledgment is LAR
* Out-of-order acknowledgment is possible, which can be further optimized

Sender Receiver
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Sender Logic — Receiving an Acknowledgment

* Logic #2: If LAR is updated

 Free the frame buffer
e Send more frames within the SWS

Sender Receiver

LFS-LAR <= SWS
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Sender Logic — Timeout

* Logic #3: retransmit frames when a timeout signal is generated

 Each frame should maintain its own timeout variable
* LAR and LFS cannot be changed!

Sender Receiver
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Recelver Logic — Recelving a Frame

* Logic #1: examine the sequence number (SegNum) of the frame

Sender Receiver
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* Logic #1: examine the sequence number (SegNum) of the frame
* [f seqNum <= LFR, the frame has been acked and sent the ack again
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Recelver Logic — Recelving a Frame

* Logic #1: examine the sequence number (SegNum) of the frame

* [f seqNum <= LFR, the frame has been acked and sent the ack again
* if seqNum == LFR+1, LFR = LFR+1, LAF=LFR+RWS, and send the ack
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Recelver Logic — Recelving a Frame

* Logic #1: examine the sequence number (SegNum) of the frame
* [f seqNum <= LFR, the frame has been acked and sent the ack again
* if seqNum == LFR+1, LFR = LFR+1, LAF=LFR+RWS, and send the ack
* [f segNum - LFR <= RWS, send the ack
* [f seqNum - LFR > RWS, discard the frame and don’t send the ack

Sender Receiver
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Receiver Logic — Sending a Negative Acknowledgment

* Logic #2 (optional): send an NAK to accelerate retransmission
* [f seqNum - LFR <= RWS && seqNum > LFR

Sender Receiver

LAF-LFR <= RWS
1

[ T T T T T T T T T T T 1]

oAt

LFR NAK LAF
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Sliding Window Discussion

* The sender and receiver can be implemented via state machines

* Tricky detalils
« SWS and RWS are based on BDP and can be adjusted online
* The frame buffer is a ring
* SeqNum can be rounded up

20



Physical layer

Link Layer Summary

A reliable (and efficient) bit delivery channel over a link
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Link Layer Summary

A frame delivery channel between directly connected or
switched hosts

A reliable (and efficient) bit delivery channel over a link
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Link Layer Summary

|

Q1: How can we identify a frame from bit streams?
'Q2: How can we handle transmission errors?

Q3: How can we achieve scaled transmission using switches?
Q4: How can we coordinate transmission between two hosts?

i\
|
|

A frame delivery channel between directly connected or
switched hosts

Link layer

Physical layer A reliable (and efficient) bit delivery channel over a link




Link Layer Summary

Q1: How can we identify a frame from bit streams?

- => Framing

Q2: How can we handle transmission errors?
=> Error handling

Q3: How can we achieve scaled transmission using switches?
=> L2 switching

Q4: How can we coordinate transmission between two hosts?
| => Reliable transmission
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A frame delivery channel between directly connected or
switched hosts

Link layer

Physical layer A reliable (and efficient) bit delivery channel over a link
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* Joday

e | 2 Reliable Transmission

e Next lecture
e |P Introduction

Summary

22



