L2 Relhiable Transmission

Ming Liu
mgliu@cs.wisc.edu

https://pages.cs.wisc.edu/~mgliu/CS640/S25/index.html

Outline

e | ast
e Ethernet

* Today

 Reliable transmission at L2

 Announcements
* L ab2 released today

Transmission @Physical Layer

* Bitstreams transmitted between two directly connected hosts

Application Layer Application Layer

Transport Layer Transport Layer

Network Layer Network Layer

Link Layer Link Layer

Physical Layer Physical Layer

000101011110010010101010101 Bits

Sender Recelver

Reliable Transmission @Physical Layer

 Reliable transmission Is essential

Application Layer Application Layer

Transport Layer Transport Layer

Network Layer Network Layer

Link Layer Link Layer

Physical Layer Physical Layer

000101011110010010101010101 Bits

Sender Recelver

Transmission @Link Layer

* Frames transmitted between two (in)directly connected hosts

Recelver

Transmission @Link Layer

* Frames transmitted between two (in)directly connected hosts

Recelver

Reliable transmission Is not necessary In
the link layer!

Unreliable Link Layer

 Common errors
* Frames are corrupted during transmission
* Frames are dropped due to cable errors
* Frames are dropped due to the SW/HW failures at the switch

Unreliable Link Layer

 Common errors
* Frames are corrupted during transmission
* Frames are dropped due to cable errors
* Frames are dropped due to the SW/HW failures at the switch

» Best-effort transmission
* For example, Ethernet does not handle reliability
* Rely on the upper layer across the stack to take care

Unreliable Link Layer

 Common errors
* Frames are corrupted during transmission
* Frames are dropped due to cable errors
* Frames are dropped due to the SW/HW failures at the switch

e Best-effort transmission
* For example, Ethernet does not handle reliability
* Rely on the upper layer across the stack to take care

A reliable link layer can simplify the transport layer

design (we’ll discuss this later).

Why it Is hard to achieve reliable
transmission?

A Reliable Transmission Example

Sender Receiver

A Reliable Transmission Example

Sender Receiver

A Reliable Transmission Example

Sender Receiver

Q1: How does the sender know if the receiver gets
the frame or not?

A Reliable Transmission Example

Sender Receiver

A Reliable Transmission Example

Sender Receiver

A Reliable Transmission Example

Sender Receiver

The receiver must explicitly tell the sender a frame is
received — acknowledgment.

A Reliable Transmission Example

Sender Receiver

A Reliable Transmission Example

Sender Receiver

A Reliable Transmission Example

Recelver

Sender

Q2: How does the sender differentiate concurrently
transmitted frames?

A Reliable Transmission Example

Recelver

Sender

Each in-flight frame and acknowledgment should be
labeled with a unique identifier.

A Reliable Transmission Example

Sender Receiver

A Reliable Transmission Example

Sender Receiver

A Reliable Transmission Example

Sender Receiver

Q3: What happens if the sender doesn’t receive the
acknowledgment?

A Reliable Transmission Example

Recelver

Sender

f?
' Frame dropped at the sending path

A Reliable Transmission Example

Recelver

Sender

f?
' Frame dropped at the receiver

A Reliable Transmission Example

Recelver

Sender

Acknowledgement frame dropped

A Reliable Transmission Example

Sender Receiver

The sender has to retransmit the frame sometime

l]ater — timeout.

A Reliable Transmission Example

Sender Receiver

A Reliable Transmission Example

Sender Receiver

A Reliable Transmission Example

Recelver

Sender

Q4: What happens if a fast sender issues traffic to a

slow receiver?

A Reliable Transmission Example

Recelver

Sender

[\

Frm e

Q4: What happens if a fast sender issues traffic to a
slow receiver? —> Lot of drops

A Reliable Transmission Example

Recelver

Sender

[\

Frm e

The sender should operate at the rate that the
receiver can accept.

Reliable Transmission Consideration

* #1: Acknowledgement
* Notify the sender of the receipt of a frame from the receiver

e #2: Unique Frame ID
e Differentiate concurrent frame transmission

* #3. Timeout

* Emulate errors in a pragmatic way
* False negatives cannot be avoided, e.g., slow receiver

* #4: Pacing
* Reduce the number of unnecessary retransmissions

10

How do we design a reliable transmission
mechanism?

11

Technique #1: Stop-and-Wait

» Key idea: 1 outstanding frame + ACK + Timeout

* Send the next frame only if the last one is successfully delivered
* When the timeout is singled, the sender issues another frame

12

Technique #1: Stop-and-Wait

» Key idea: 1 outstanding frame + ACK + Timeout

* Send the next frame only if the last one is successfully delivered
* When the timeout is singled, the sender issues another frame

Recelver

12

Technique #1: Stop-and-Wait

» Key idea: 1 outstanding frame + ACK + Timeout

* Send the next frame only if the last one is successfully delivered
* When the timeout is singled, the sender issues another frame

Recelver

Timeout T [

Timeout T [
<

12

Technique #1: Stop-and-Wait

» Key idea: 1 outstanding frame + ACK + Timeout

* Send the next frame only if the last one is successfully delivered

* When the timeout is singled, the sender issues another frame
” N\

The sender might receive a duplicated

acknowledgment.

Timeout T [_________
«nmmmmmm

Timeout T [
<

12

Technique #1: Stop-and-Wait

» Key idea: 1 outstanding frame + ACK + Timeout

* Send the next frame only if the last one is successfully delivered
* When the timeout is singled, the sender issues another frame

* Discussion:
* Simple to implement
* Low performance — cannot fully utilize the bandwidth

12

Technique #2: Concurrent Logical Channels

» Key idea: partition a physical link into multiple logical channels
* Each channel works independently
* Each channel can operate using the stop-and-wait or sliding window
mechanism (discussed next)
* Concurrent outstanding frames per link = Channel # X Concurrent
outstanding frames per channel

13

Technique #2: Concurrent Logical Channels

» Key idea: partition a physical link into multiple logical channels
* Each channel works independently
* Each channel can operate using the stop-and-wait or sliding window
mechanism (discussed next)
* Concurrent outstanding frames per link = Channel # X Concurrent
outstanding frames per channel

* In practice:
e PCle: x1, x2, x4, x8, x16
* NVLInk: x16, x32, x64, x96, x128

13

Technique #3: Sliding Window

» Key idea: keep the communication channel full with N

consecutive frames
* Driven by the bandwidth-delay product (BDP)
* Seems simple, but...

Sender Receiver

Time

—

<«

14

States Maintained by the Sender

« SWS: Send Window Size
* LAR: the sequence number of the last acknowledgment received
* LFS: the sequence number of the last frame sent

Sender Receiver

LFS-LAR <= SWS
1

[T T T T T T T T T T T]

T T

LAR LFS

15

States Maintained by the Receiver

« RWS: Receive Window Size
* LAF: the sequence number of the largest acceptable frame
* LFR: the sequence number of the last frame received

Sender Receiver

16

Sender Logic — Sending a Frame

* Logic #1: send unacknowledged frames within the SWS
» Keep the invariant: LFS - LAR <= SWS

Sender Receiver

LFS-LAR <= SWS

[T T T T T T T T T T T 1

T T

LAR LFS

15

Sender Logic — Sending a Frame

* Logic #1: send unacknowledged frames within the SWS
» Keep the invariant: LFS - LAR <= SWS

Sender Receiver

LFS-LAR <= SWS
1

[T T T T T T T T T T T 1]

T T

LAR LFS

15

Sender Logic — Receiving an Acknowledgment

* Logic #2: receive acknowledgments from the receiver
* Only update LAR if the SegNum of the acknowledgment is LAR
* Out-of-order acknowledgment is possible, which can be further optimized

Sender Receiver

16

Sender Logic — Receiving an Acknowledgment

* Logic #2: If LAR is updated

 Free the frame buffer
e Send more frames within the SWS

Sender Receiver

LFS-LAR <= SWS

[T T T T T T T T T T T 1]

T T

LAR LFS

16

Sender Logic — Receiving an Acknowledgment

* Logic #2: If LAR is updated

 Free the frame buffer
e Send more frames within the SWS

Sender Receiver

LFS-LAR <= SWS
1

[T T T T T T T T T T T 1]

T T

LAR LFS

16

Sender Logic — Timeout

* Logic #3: retransmit frames when a timeout signal is generated

 Each frame should maintain its own timeout variable
* LAR and LFS cannot be changed!

Sender Receiver

17

Recelver Logic — Recelving a Frame

* Logic #1: examine the sequence number (SegNum) of the frame

Sender Receiver

Recelver Logic — Recelving a Frame

* Logic #1: examine the sequence number (SegNum) of the frame
* [f seqNum <= LFR, the frame has been acked and sent the ack again

Sender Receiver

18

Recelver Logic — Recelving a Frame

* Logic #1: examine the sequence number (SegNum) of the frame

* [f seqNum <= LFR, the frame has been acked and sent the ack again
* if seqNum == LFR+1, LFR = LFR+1, LAF=LFR+RWS, and send the ack

Sender Receiver

18

Recelver Logic — Recelving a Frame

* Logic #1: examine the sequence number (SegNum) of the frame
* [f seqNum <= LFR, the frame has been acked and sent the ack again
* if seqNum == LFR+1, LFR = LFR+1, LAF=LFR+RWS, and send the ack
* [f segNum - LFR <= RWS, send the ack

Sender Receiver

18

Recelver Logic — Recelving a Frame

* Logic #1: examine the sequence number (SegNum) of the frame
* [f seqNum <= LFR, the frame has been acked and sent the ack again
* if seqNum == LFR+1, LFR = LFR+1, LAF=LFR+RWS, and send the ack
* [f segNum - LFR <= RWS, send the ack
* [f seqNum - LFR > RWS, discard the frame and don’t send the ack

Sender Receiver

18

Receiver Logic — Sending a Negative Acknowledgment

* Logic #2 (optional): send an NAK to accelerate retransmission
* [f seqNum - LFR <= RWS && seqNum > LFR

Sender Receiver

LAF-LFR <= RWS
1

[T T T T T T T T T T T 1]

oAt

LFR NAK LAF

19

Sliding Window Discussion

* The sender and receiver can be implemented via state machines

* Tricky detalils
« SWS and RWS are based on BDP and can be adjusted online
* The frame buffer is a ring
* SeqNum can be rounded up

20

Physical layer

Link Layer Summary

A reliable (and efficient) bit delivery channel over a link

21

Link layer

Physical layer

Link Layer Summary

A frame delivery channel between directly connected or
switched hosts

A reliable (and efficient) bit delivery channel over a link

21

Link Layer Summary

|

Q1: How can we identify a frame from bit streams?
'Q2: How can we handle transmission errors?

Q3: How can we achieve scaled transmission using switches?
Q4: How can we coordinate transmission between two hosts?

i\
|
|

A frame delivery channel between directly connected or
switched hosts

Link layer

Physical layer A reliable (and efficient) bit delivery channel over a link

Link Layer Summary

Q1: How can we identify a frame from bit streams?

- => Framing

Q2: How can we handle transmission errors?
=> Error handling

Q3: How can we achieve scaled transmission using switches?
=> L2 switching

Q4: How can we coordinate transmission between two hosts?
| => Reliable transmission

E—— = e _ — — — i —

A frame delivery channel between directly connected or
switched hosts

Link layer

Physical layer A reliable (and efficient) bit delivery channel over a link

21

* Joday

e | 2 Reliable Transmission

e Next lecture
e |P Introduction

Summary

22

