Network Virtualization in
Data Center Networks (1)

Ming Liu
mgliu@cs.wisc.edu

Outline

| ast lecture
* Load balancing in data center networks (1)

* Joday

e Network virtualization in data center networks

e Announcements

* L ab2 released today due 11/05/2025 11:59 PM
* Midterm report due 11/04/2025 11:59 PM

Where we are?

Multiple communication paths exist when accessing

and traversing data center networks!

Data Center Network

Physical Connectivity + Networking Architecture (L1, L2, L3)

Where we are?

The forwarding (destination) address and routing table
determine how packets are forwarded!

Data Center Network

Addressing and Routing (L4, L5)

Physical Connectivity + Networking Architecture (L1, L2, L3)

Where we are?

Flow scheduling requires knowing the loading status
(congestion degree) of path candidates!

Flow Scheduling (L6, L7)

Data Center Network

Addressing and Routing (L4, L5)

Physical Connectivity + Networking Architecture (L1, L2, L3)

Where we are?

A performant load-balancer design requires per-packet and
per-flow processing at line rate with traffic monitoring.

Load balancing (L8, L9)

Flow Scheduling (L6, L7)

Data Center Network

Addressing and Routing (L4, L5)

Physical Connectivity + Networking Architecture (L1, L2, L3)

Where we are?

A performant load- balancer deS|gn requwes per-packet and
per-flow pro~= - monltorlng

Data Center Network

Addressing and Routing (L4, L5)

Physical Connectivity + Networking Architecture (L1, L2, L3)

Data centers are managed environments.
The predominant system abstraction (user
interface) is a virtual machine (VM)!

How network is virtualized?

How network is virtualize

VM

Virtual Machine Overview

* AVM is an isolated computing environment
* CPU, memory, network, and storage

VM
Applications

Virtual Machine Overview

* A hypervisor is the privileged software for resource management.
* E.9., KVM, Xen, Hyper-V, VMware ESX], ...

VM
Applications

Hypervisor (Type-1)

We use KVM and virtio as the case study.

Set Up the Context

Virtual NIC (VNIC)

Physical NIC (pNIC)

Set Up the Context

Virtual NIC (VNIC)

How does this work?

e ———

Physical NIC (pNIC)

What is a vNIC?

* The network interface representation of a virtual machine
* E.g., ifconfig

What is a vNIC?

* The network interface representation of a virtual machine
* E.g., ifconfig

But what is “representation”?

What is a vNIC?

* The network interface representation of a virtual machine
* E.g., ifconfig

* The communication buffer exposed by the virtual device

.“

Full Virtualization v.s. Para-Virtualization

Guest OS

Traps

Device emulation

Full Virtualization

Guest OS

Para-drivers

Traps

Device emulation

Para-Virtualization

10

Full Virtualization v.s. Para-Virtualization

void nic_write_buffer(char *buf, int size) {

: _ ~ void nic_write_buffer(char *buf, int size) {
for (; size > 0; size--) { , vmm_ write(NIC_TX_BUF, buf, size):
nic_poll_ready(); 1 \
outb(NIC_TX_ BUF, *buf++); ‘ | |
} \

B ‘ |

Full Virtualization Para-Virtualization

10

Full Virtualization v.s. Para-Virtualization

void nic_write_buffer(char *buf, int size) {
for (; size > 0; size--) {

nic_poll_ready(); 1

outb(NIC_TX_ BUF, *buf++); | |

void nic_write_buffer(char *buf, int size) {
vmm_write(NIC_TX_ BUF, buf, size);

y .
K ‘

i Our focus: KVM

Full Virtualization Para-Virtualization

Front-end Virtio

* virtio_net: run in the guest OS and provide “virtuqueue”
» See linux/include/linux/virtio.h

———— —

Applications
v A

' /* Register buffers for sending or receiving. */

struct virtqueue {

struct list_head list;
virtio-net @ @ void (*callback)(struct virtqueue *vq);
const char *name;

struct virtio_device *vdev;
| unsigned int index;
unsigned int num_free;
void *priv;

Hardware
Physical NIC (pNIC)

11

Front-end Packet Flow

virtio-net @ @

‘1 “virtio_net” driver in guest OS manipulate data entires in the
. wrtuqueue

_

Device Driver

Physical NIC (pNIC)

12

Front-end Packet Flow

- Applications
.

——— ——— ===

e = ——— p——

virtio-net @ @ 2. “virtio_net” driver in guest OS calls “virtqueue_kick_prepar
‘and “virtqueue_notify()” to interact with the backend device;

e ”

e —————— — p—

VirtlO Device
Emulation

‘ H

Physical NIC (pNIC)

Front-end Packet Flow

Applications R

* A 1. “virtio_net” driver in guest OS manipulate data entires in th
: “virtugueue”;

virtio-net @ @

_ _

e e e e— _ — = —— — _ —

o o o - I
2. “virtio_net” driver in guest OS calls “virtqueue_kick_prepare()” |
and “virtqueue_notify()” to interact with the backend device;)

—— — =

13. The back-end device driver pops requests, processes it, and
'writes to the device buffer;

VirtlO Device . . _ .
. Device Driver
Emulation

Physical NIC (pNIC)

12

Front-end Packet Flow

Applications

v H

virtio-net @ @

VirtlO Device

Physical NIC (pNIC)

Device Driver

Emulation

“virtugueue”;

_ _

— - e e e e— _ — = —— — _ —

2. “virtio_net” driver in guest OS calls “virtqueue_kick_prepar

|
3. The back-end device driver pops requests, processes it, an
'writes to the device buffer;

«

|
|
|

e()” |

and “virtqueue_notify()” to interact with the backend device;

)

d

12

Virtqueue Detalls

A channel between front-end and back-end
* Part of the memory of the guest OS

* Three parts
* Descriptor area: describing buffer status
* Driver area: data supplied by the front-end driver to the back-end device
* Device area: data supplied by the backend-end device

Avail Descriptor area Used

ldx Buffer Len Flags Next ldx
1

OX8000 | OXx2000 W|N 1
ringll j OxDOOO | 0Xx2000 W X ringll
0 0] 0x3000

Back-end Virtio Packet Flow

- Applications
P

virtio-net @ @

VirtlO Device . .
. Device Driver
Emulation

KVM Module
l A
|

Physical NIC (pNIC)

T T T e —— — _ e — —— _ e — _

1. When the guest OS writes data to the address, it triggers a

VM-exit (reason code = EPT_MISCONFIGURATION);

e — = — i — — — __

14

Back-end Virtio Packet Flow
Applications

* - 1. When the guest OS writes data to the address, it triggers a
.VM-eX|t (reason code = EPT MISCONFIGURATION)

virtio-net @ @ 2. A corresponding KVM VM-exit handler is called, which \
notifies QEMU based on the reglstered |oventfd address range w

VirtlO Device . .
. Device Driver
Emulation
KVM Module

Physical NIC (pNIC)

14

Back-end Virtio Packet Flow

Applications

v H

virtio-net @ @

VirtlO Device . .
. Device Driver
Emulation
KVM Module

Physical NIC (pNIC)

‘1 When the guest OS writes data to the address, it trlggers a

VM-eX|t (reason code = EPT MISCONFIGURATION)

12 A corresponding KVM VM-exit handler is called WhICh r

notifies QEMU based on the reglstered |oventfd address range

‘3. Once finished reading/writing operations, QEMU injects an

IRQ to notify that the operation is complete;

14

Back-end Virtio Packet Flow

Applications

v H

virtio-net @ @

VirtlO Device . .
. Device Driver
Emulation
KVM Module

‘1 When the guest OS writes data to the address, it trlggers a

VM-eX|t (reason code = EPT MISCONFIGURATION)

12 A corresponding KVM VM-exit handler is called WhICh r

notifies QEMU based on the reglstered |oventfd address range

3. Once finished reading/writing operations, QEMU injects an

IRQ to notify that the operation is complete;

Physical NIC (pNIC)

14

VirtlO Overall

L Virtqueue
| i ice Dri A)—=>
L _Y_Ir_tl & VirtlO Device Emulation

.. |r-- irqfd

| vPUGhead] /@[Main Loop Thredd |

oo Al
----- y
Vi vIRQ | 9 —
______ ﬁm Y
| _loeventta |
KVM Module Device Driver
Linux Kernel .
;.

Device

15

VirtlO Overall

ARt)

[—’\ Virtqueue_
' ce Dri H{D)—=
L _Y_'r_tl (5 VirtlO Device Emulation

- vCPU (Thread)

N

 Step 1: The guest OS rings a doorbell after inserting into the virtqueue;
« Step 2: The context is forwarded to the host KVM handler;

e Step 3: The context is forwarded to the QEMU process via ioeventfd;

15

VirtlO Overall

ARt)

[—’\ Virtqueue_
' ce Dri H{D)—=
L _Y_'r_tl (5 VirtlO Device Emulation

- vCPU (Thread)

N

o Step 4: QEMU process reads the request from the virtgueue and handles it
e Step 5: After completion, QEMU puts the results into the virtqueue;

o Step 6: QEMU injects an IRQ through irgfd to the guest;

15

VirtlO Overall

(" irgfd

) - ~™" Main Loop Thre

iU

®
9,_ -

]ﬁ-.-m
| _iogventfd_}
KVM Module Device Driver

[—’\ Virtqueue_
' ce Dri H{D)—=
L _Y_'r_tl (5 VirtlO Device Emulation

ARt)

- vCPU (Thread)

 Step 7: AVvIRQ is injected into the guest OS;
* Step 8: The guest OS execution is resumed, the request I/O operation is done and

virtio device driver gets results data from the virtqueue;

15

How Is the VM network policy applied?

VM
vNIC

Host Virtual Networking

Virtual Switching

17

Host Virtual Networkin

{_Virtqueue |}
. . . 1
VirtlO Device Driver <

Exception_A Guest Kernel A
g (== -
~ 1 irgfd o 4.

vCPU (Thread) Qggjr"' Main Loop Thredd
@ & U O)
———— 3
j[_Z'B_Q__" H;(4 w
| ioeventfd !

.

KVM Module -F- Device Driver

VirtlO Device Emulation

Linux Kernel

Device

Virtual Switching

Host Virtual Networking

17

VM
vNIC

Host Virtual Networking

17

Andromeda

» Kernel bypass data plane
* Fast packet flow between guest OS and hypervisor

* Chained table execution
* On both ingress and egress

18

Andromeda

* Kernel bypass data plane
* Fast packet flow between guest OS and hypervisor

* Cl

Ingress

(

NIC RX Queue

= Fan out to VMs

LR

(1) —

Per VM Queues

Flow misses, Decryption, VM

Migrations, oS sampling

TCP Dump

Pull Pusher

Packet parsing, Flow lookup,
Routing, Firewall, GRE Decap

__ Fan in from NIC
' queues (LAG)
. v | NIC Round Robin
' Scheduler
" VM Priority S
- Scheduler '

l

Latency Sampler

Packet Tracer

by

Coprocessors,
Vswitchd, Hairpin

|

Flow Table

(D

Pipeline
a

>

LRO

Fan outto _
VM Queues

I

> TCP Dump

Virtio Net Encap

Stats Exporter

>(2)

__ Dataplane to guest
v payload copy

Hash Demux

|

VM RX Queue

[

I

18

Andromeda

* Kernel bypass data plane
* Fast packet flow between guest OS and hypervisor

e C

f

1

Egress

NIC Tx Queue

_ Fan out to NIC

queues (LAG)

—Y

————

|

[Hash Demux

Flow misscs,

Encryption

-~ Pull Pusher —>

~ Guest to dataplane
! payload copy

TCP Dump

>

Stats Exporter

Coprocessors and
Vswitchd

I

Flow Tablc
Pipclinc

A

Flow lookup, Routing, |
GRE encap, Firewall

| VM Round Robin |—/
Scheduler A

TCP Dump

Latency Sampler

b

>

Fan in from VMs -

>

Virtio Net Decap

|

Fan in [rom
VM Queues

> Ratc Limuter

[

Queue Round
Robin Scheduler

1
|
|
|
|

Y

Packet Parser

[

.
-

VM TX Qucuc

[

I

18

Andromeda

* Kernel bypass data plane
* Fast packet flow between guest OS and hypervisor

° le Egress

Flow misses, ol

Coprocessors and

Fan out to NIC Encryption Vswitchd
° | E" queues (LAG) I
- — . . - Flow Tablc -

I— NIC Tx Queue |« Hash Demux Pull Pusher TCP Dump Pipcline (1)

' 3

Guest to dataplane Flow lookup, Routing,

‘.?' ~ payload copy GRE encap, Firewall

(1) TSO Stats Exporter Mo Rd obm Latency Sampler Packet Parser (2)

Assign a co-processor thread with a guest VM to

run CPU-intensive ops

18

Cycles per Byte

Andromeda Evolution

120 Combined W Guest B Host
90 Host: 43.5

Guest:16.0
60 Host: 30.4

Guest:12.3

Host: 5.4 Host: 2.6 Host: 2.0
Guest: 56 Guest: 5.0 Guest: 4.9

(2
-

O —
Pre Andromeda Andromeda Andromeda Andromeda Andromeda
Andromeda 1.0 1.5 2.0 2.1 2.2

Andromeda 1.0
Kernel datapath

Andromeda 1.5
Optimize pipeline

Andromeda 2.0
OS bypass, 1 thread
hop

Andromeda 2.1
Remove thread hop

Andromeda 2.2
Memory copy offload

19

Read the code, check virtio/virtio-net/Vhost
Implementations, and play with it!

Summary

* Joday

* Network virtualization in data center networks ()

e Next
» PicNIC (SIGCOMM’19)

21

