
Ming Liu
mgliu@cs.wisc.edu

Advanced Computer Networks

CS740
https://pages.cs.wisc.edu/~mgliu/CS740/F25/index.html

Network Virtualization in
Data Center Networks (I)

1

Outline

2

• Last lecture
• Load balancing in data center networks (II)

• Today
• Network virtualization in data center networks

• Announcements
• Lab2 released today due 11/05/2025 11:59 PM
• Midterm report due 11/04/2025 11:59 PM

Where we are?
D

at
a

C
en

te
r N

et
w

or
k

3

Multiple communication paths exist when accessing
and traversing data center networks!

Physical Connectivity + Networking Architecture (L1, L2, L3)

Where we are?
D

at
a

C
en

te
r N

et
w

or
k

3

The forwarding (destination) address and routing table
determine how packets are forwarded!

Addressing and Routing (L4, L5)

Physical Connectivity + Networking Architecture (L1, L2, L3)

Where we are?

Physical Connectivity + Networking Architecture (L1, L2, L3)

Addressing and Routing (L4, L5)D
at

a
C

en
te

r N
et

w
or

k

3

Flow scheduling requires knowing the loading status
(congestion degree) of path candidates!

Flow Scheduling (L6, L7)

Where we are?

Physical Connectivity + Networking Architecture (L1, L2, L3)

Addressing and Routing (L4, L5)D
at

a
C

en
te

r N
et

w
or

k

3

A performant load-balancer design requires per-packet and
per-flow processing at line rate with traffic monitoring.

Flow Scheduling (L6, L7)

Load balancing (L8, L9)

Where we are?

Physical Connectivity + Networking Architecture (L1, L2, L3)

Addressing and Routing (L4, L5)D
at

a
C

en
te

r N
et

w
or

k

3

A performant load-balancer design requires per-packet and
per-flow processing at line rate with traffic monitoring.

Flow Scheduling (L6, L7)

Load balancing (L8, L9)

4

Data centers are managed environments.
The predominant system abstraction (user
interface) is a virtual machine (VM)!

5

How network is virtualized?

5

How network is virtualized?

VMVMVMVMVMVM

Virtual Machine Overview

6

• A VM is an isolated computing environment
• CPU, memory, network, and storage

Guest OS

Applications
VM

Virtual Machine Overview

6

• A hypervisor is the privileged software for resource management.
• E.g., KVM, Xen, Hyper-V, VMware ESXi, …

Guest OS

Hypervisor (Type-1)

Applications
VM

We use KVM and virtio as the case study.

7

Guest OS

Applications

8

Hardware

Set Up the Context

Virtual NIC (vNIC)

Physical NIC (pNIC)

Guest OS

Applications

8

Hardware

Set Up the Context

Virtual NIC (vNIC)

Physical NIC (pNIC)

How does this work?

What is a vNIC?

• The network interface representation of a virtual machine
• E.g., ifconfig

9

What is a vNIC?

• The network interface representation of a virtual machine
• E.g., ifconfig

9

But what is “representation”?

What is a vNIC?

• The network interface representation of a virtual machine
• E.g., ifconfig

9

• The communication buffer exposed by the virtual device

Full Virtualization v.s. Para-Virtualization

10

Guest OS

Hypervisor

Full Virtualization

Traps
Device emulation

Guest OS

Hypervisor

Traps
Device emulation

Para-drivers

Para-Virtualization

Full Virtualization v.s. Para-Virtualization

10

Guest OS

Hypervisor

Full Virtualization

Traps
Device emulation

Guest OS

Hypervisor

Traps
Device emulation

Para-drivers

Para-Virtualization

void nic_write_buffer(char *buf, int size) {
 for (; size > 0; size--) {
 nic_poll_ready();
 outb(NIC_TX_BUF, *buf++);
 }
}

void nic_write_buffer(char *buf, int size) {
 vmm_write(NIC_TX_BUF, buf, size);
}

Full Virtualization v.s. Para-Virtualization

10

Guest OS

Hypervisor

Full Virtualization

Traps
Device emulation

Guest OS

Hypervisor

Traps
Device emulation

Para-drivers

Para-Virtualization

void nic_write_buffer(char *buf, int size) {
 for (; size > 0; size--) {
 nic_poll_ready();
 outb(NIC_TX_BUF, *buf++);
 }
}

void nic_write_buffer(char *buf, int size) {
 vmm_write(NIC_TX_BUF, buf, size);
}

Our focus: KVM

Front-end Virtio

11

Guest OS

Applications

Hardware

virtio-net

Physical NIC (pNIC)

• virtio_net: run in the guest OS and provide “virtuqueue”
• See linux/include/linux/virtio.h

/* Register buffers for sending or receiving. */
struct virtqueue {
	 struct list_head list;
	 void (*callback)(struct virtqueue *vq);
	 const char *name;
	 struct virtio_device *vdev;
	 unsigned int index;
	 unsigned int num_free;
	 void *priv;
};

Front-end Packet Flow

Guest OS

Applications

Hardware
Physical NIC (pNIC)

1. “virtio_net” driver in guest OS manipulate data entires in the
“virtuqueue”;

12

KVM/QEMU
Device Driver

virtio-net

Front-end Packet Flow

Guest OS

Applications

Hardware
Physical NIC (pNIC)

1. “virtio_net” driver in guest OS manipulate data entires in the
“virtuqueue”;

12

2. “virtio_net” driver in guest OS calls “virtqueue_kick_prepare()”
and “virtqueue_notify()” to interact with the backend device;

KVM/QEMU
VirtIO Device
Emulation

virtio-net

Front-end Packet Flow

Guest OS

Applications

Hardware
Physical NIC (pNIC)

1. “virtio_net” driver in guest OS manipulate data entires in the
“virtuqueue”;

12

2. “virtio_net” driver in guest OS calls “virtqueue_kick_prepare()”
and “virtqueue_notify()” to interact with the backend device;

3. The back-end device driver pops requests, processes it, and
writes to the device buffer;KVM/QEMU

Device Driver

virtio-net

VirtIO Device
Emulation

Front-end Packet Flow

Guest OS

Applications

Hardware
Physical NIC (pNIC)

1. “virtio_net” driver in guest OS manipulate data entires in the
“virtuqueue”;

12

2. “virtio_net” driver in guest OS calls “virtqueue_kick_prepare()”
and “virtqueue_notify()” to interact with the backend device;

3. The back-end device driver pops requests, processes it, and
writes to the device buffer;

4. The context return to the guest OS to indicate the completion;

KVM/QEMU

virtio-net

Device DriverVirtIO Device
Emulation

Virtqueue Details

13

• A channel between front-end and back-end
• Part of the memory of the guest OS

• Three parts
• Descriptor area: describing buffer status
• Driver area: data supplied by the front-end driver to the back-end device
• Device area: data supplied by the backend-end device

Back-end Virtio Packet Flow

14

1. When the guest OS writes data to the address, it triggers a
VM-exit (reason code = EPT_MISCONFIGURATION);Guest OS

Applications

Hardware
Physical NIC (pNIC)

KVM/QEMU

virtio-net

Device DriverVirtIO Device
Emulation

KVM Module

Back-end Virtio Packet Flow

14

1. When the guest OS writes data to the address, it triggers a
VM-exit (reason code = EPT_MISCONFIGURATION);

2. A corresponding KVM VM-exit handler is called, which
notifies QEMU based on the registered ioventfd address range;

Guest OS

Applications

Hardware
Physical NIC (pNIC)

KVM/QEMU

virtio-net

Device DriverVirtIO Device
Emulation

KVM Module

Back-end Virtio Packet Flow

14

1. When the guest OS writes data to the address, it triggers a
VM-exit (reason code = EPT_MISCONFIGURATION);

2. A corresponding KVM VM-exit handler is called, which
notifies QEMU based on the registered ioventfd address range;

3. Once finished reading/writing operations, QEMU injects an
IRQ to notify that the operation is complete;

Guest OS

Applications

Hardware
Physical NIC (pNIC)

KVM/QEMU

virtio-net

Device DriverVirtIO Device
Emulation

KVM Module

Back-end Virtio Packet Flow

14

1. When the guest OS writes data to the address, it triggers a
VM-exit (reason code = EPT_MISCONFIGURATION);

2. A corresponding KVM VM-exit handler is called, which
notifies QEMU based on the registered ioventfd address range;

3. Once finished reading/writing operations, QEMU injects an
IRQ to notify that the operation is complete;

4. A vIRQ is further delivered to the guest kernel;

Guest OS

Applications

Hardware
Physical NIC (pNIC)

KVM/QEMU

virtio-net

Device DriverVirtIO Device
Emulation

KVM Module

15

VirtIO Overall

15

VirtIO Overall

• Step 1: The guest OS rings a doorbell after inserting into the virtqueue;

• Step 2: The context is forwarded to the host KVM handler;

• Step 3: The context is forwarded to the QEMU process via ioeventfd;

15

VirtIO Overall

• Step 4: QEMU process reads the request from the virtqueue and handles it

• Step 5: After completion, QEMU puts the results into the virtqueue;

• Step 6: QEMU injects an IRQ through irqfd to the guest;

15

VirtIO Overall

• Step 7: A vIRQ is injected into the guest OS;

• Step 8: The guest OS execution is resumed, the request I/O operation is done and

virtio device driver gets results data from the virtqueue;

How is the VM network policy applied?

16

Host Virtual Networking

17

VM

Virtual Switching

vNIC

Host Virtual Networking

17

VM

Virtual Switching

vNIC

Host Virtual Networking

17

VM

Virtual Switching

vNIC
VM
vNIC

VM
vNIC

Host Virtual Networking

17

VM

Virtual Switching

vNIC
VM
vNIC

VM
vNIC

Match Action Match Action

Andromeda

• Kernel bypass data plane
• Fast packet flow between guest OS and hypervisor

• Chained table execution
• On both ingress and egress

18

Andromeda

• Kernel bypass data plane
• Fast packet flow between guest OS and hypervisor

• Chained table execution
• On both ingress and egress

18

Ingress

Andromeda

• Kernel bypass data plane
• Fast packet flow between guest OS and hypervisor

• Chained table execution
• On both ingress and egress

18

Egress

Andromeda

• Kernel bypass data plane
• Fast packet flow between guest OS and hypervisor

• Chained table execution
• On both ingress and egress

18

Egress

Assign a co-processor thread with a guest VM to
run CPU-intensive ops

Andromeda Evolution

19

Read the code, check virtio/virtio-net/Vhost
implementations, and play with it!

20

Summary

• Today
• Network virtualization in data center networks (I)

• Next
• PicNIC (SIGCOMM’19)

21

