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Outline
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• Last lecture
• Load balancing in data center networks (II)

• Today
• Network virtualization in data center networks

• Announcements
• Lab2 released today due 11/05/2025 11:59 PM
• Midterm report due 11/04/2025 11:59 PM
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Multiple communication paths exist when accessing 
and traversing data center networks!

Physical Connectivity + Networking Architecture (L1, L2, L3)
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The forwarding (destination) address and routing table 
determine how packets are forwarded!

Addressing and Routing (L4, L5)

Physical Connectivity + Networking Architecture (L1, L2, L3)
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Flow scheduling requires knowing the loading status  
(congestion degree) of path candidates!

Flow Scheduling (L6, L7)



Where we are?

Physical Connectivity + Networking Architecture (L1, L2, L3)

Addressing and Routing (L4, L5)D
at

a 
C

en
te

r N
et

w
or

k

3

A performant load-balancer design requires per-packet and 
per-flow processing at line rate with traffic monitoring.

Flow Scheduling (L6, L7)

Load balancing (L8, L9)
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Data centers are managed environments. 
The predominant system abstraction (user 
interface) is a virtual machine (VM)!
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How network is virtualized?
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How network is virtualized?

VMVMVMVMVMVM



Virtual Machine Overview
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• A VM is an isolated computing environment
• CPU, memory, network, and storage

Guest OS

Applications
VM



Virtual Machine Overview
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• A hypervisor is the privileged software for resource management.
• E.g., KVM, Xen, Hyper-V, VMware ESXi, …

Guest OS

Hypervisor (Type-1)

Applications
VM



We use KVM and virtio as the case study.
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Guest OS 

Applications

8

Hardware 

Set Up the Context

Virtual NIC (vNIC)

Physical NIC (pNIC)



Guest OS 

Applications
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Hardware 

Set Up the Context

Virtual NIC (vNIC)

Physical NIC (pNIC)

How does this work?



What is a vNIC?

• The network interface representation of a virtual machine
• E.g., ifconfig
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What is a vNIC?

• The network interface representation of a virtual machine
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But what is “representation”?



What is a vNIC?

• The network interface representation of a virtual machine
• E.g., ifconfig
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• The communication buffer exposed by the virtual device



Full Virtualization v.s. Para-Virtualization
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Guest OS

Hypervisor

Full Virtualization

Traps
Device emulation

Guest OS

Hypervisor

Traps
Device emulation

Para-drivers

Para-Virtualization



Full Virtualization v.s. Para-Virtualization

10

Guest OS

Hypervisor

Full Virtualization

Traps
Device emulation

Guest OS

Hypervisor

Traps
Device emulation

Para-drivers

Para-Virtualization

void nic_write_buffer(char *buf, int size) { 
  for (; size > 0; size--) { 
    nic_poll_ready();               
    outb(NIC_TX_BUF, *buf++);         
  } 
}

void nic_write_buffer(char *buf, int size) { 
  vmm_write(NIC_TX_BUF, buf, size); 
} 
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Guest OS

Hypervisor

Full Virtualization

Traps
Device emulation

Guest OS

Hypervisor

Traps
Device emulation

Para-drivers

Para-Virtualization

void nic_write_buffer(char *buf, int size) { 
  for (; size > 0; size--) { 
    nic_poll_ready();               
    outb(NIC_TX_BUF, *buf++);         
  } 
}

void nic_write_buffer(char *buf, int size) { 
  vmm_write(NIC_TX_BUF, buf, size); 
} 

Our focus: KVM



Front-end Virtio
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Guest OS 

Applications

Hardware 

virtio-net

Physical NIC (pNIC)

• virtio_net: run in the guest OS and provide “virtuqueue”
• See linux/include/linux/virtio.h

/* Register buffers for sending or receiving. */ 
struct virtqueue { 
	 struct list_head list; 
	 void (*callback)(struct virtqueue *vq); 
	 const char *name; 
	 struct virtio_device *vdev; 
	 unsigned int index; 
	 unsigned int num_free; 
	 void *priv; 
};



Front-end Packet Flow

Guest OS 

Applications

Hardware 
Physical NIC (pNIC)

1. “virtio_net” driver in guest OS manipulate data entires in the 
“virtuqueue”;

12

KVM/QEMU 
Device Driver

virtio-net
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“virtuqueue”;
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2. “virtio_net” driver in guest OS calls “virtqueue_kick_prepare()” 
and “virtqueue_notify()” to interact with the backend device;

KVM/QEMU 
VirtIO Device 
Emulation

virtio-net
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Front-end Packet Flow
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Applications

Hardware 
Physical NIC (pNIC)

1. “virtio_net” driver in guest OS manipulate data entires in the 
“virtuqueue”;
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2. “virtio_net” driver in guest OS calls “virtqueue_kick_prepare()” 
and “virtqueue_notify()” to interact with the backend device;

3. The back-end device driver pops requests, processes it, and 
writes to the device buffer;

4. The context return to the guest OS to indicate the completion;

KVM/QEMU 

virtio-net

Device DriverVirtIO Device 
Emulation



Virtqueue Details
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• A channel between front-end and back-end
• Part of the memory of the guest OS

• Three parts
• Descriptor area: describing buffer status
• Driver area: data supplied by the front-end driver to the back-end device
• Device area: data supplied by the backend-end device



Back-end Virtio Packet Flow
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1. When the guest OS writes data to the address, it triggers a 
VM-exit (reason code = EPT_MISCONFIGURATION);Guest OS 

Applications

Hardware 
Physical NIC (pNIC)

KVM/QEMU 

virtio-net

Device DriverVirtIO Device 
Emulation

KVM Module
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1. When the guest OS writes data to the address, it triggers a 
VM-exit (reason code = EPT_MISCONFIGURATION);

2. A corresponding KVM VM-exit handler is called, which 
notifies QEMU based on the registered ioventfd address range;

3. Once finished reading/writing operations, QEMU injects an 
IRQ to notify that the operation is complete;

4. A vIRQ is further delivered to the guest kernel;

Guest OS 

Applications

Hardware 
Physical NIC (pNIC)

KVM/QEMU 

virtio-net

Device DriverVirtIO Device 
Emulation

KVM Module
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VirtIO Overall
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VirtIO Overall

• Step 1: The guest OS rings a doorbell after inserting into the virtqueue; 

• Step 2: The context is forwarded to the host KVM handler; 

• Step 3: The context is forwarded to the QEMU process via ioeventfd;
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VirtIO Overall

• Step 4: QEMU process reads the request from the virtqueue and handles it

• Step 5: After completion, QEMU puts the results into the virtqueue; 

• Step 6: QEMU injects an IRQ through irqfd to the guest;
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VirtIO Overall

• Step 7: A vIRQ is injected into the guest OS;

• Step 8: The guest OS execution is resumed, the request I/O operation is done and 

virtio device driver gets results data from the virtqueue;



How is the VM network policy applied?
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Host Virtual Networking
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VM 

Virtual Switching

vNIC
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VM 

Virtual Switching

vNIC
VM 
vNIC

VM 
vNIC

Match Action Match Action



Andromeda

• Kernel bypass data plane
• Fast packet flow between guest OS and hypervisor

• Chained table execution
• On both ingress and egress
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Andromeda

• Kernel bypass data plane
• Fast packet flow between guest OS and hypervisor

• Chained table execution
• On both ingress and egress
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Egress

Assign a co-processor thread with a guest VM to 
run CPU-intensive ops



Andromeda Evolution
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Read the code, check virtio/virtio-net/Vhost 
implementations, and play with it!
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Summary

• Today
• Network virtualization in data center networks (I)

• Next
• PicNIC (SIGCOMM’19)
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