
Ming Liu 
mgliu@cs.wisc.edu 

Advanced Computer Networks 

CS740 
https://pages.cs.wisc.edu/~mgliu/CS740/F25/index.html

Programmable Switch

1



Outline

2

• Last lecture
• Software-Defined Network

• Today
• Programmable Switch

• Announcements
• Lab2 due 11/05/2025 11:59 PM
• Midterm report due 11/04/2025 11:59 PM



Some Terms

3

• Management Plane: device configuration
• Manage the control plane (and the system)
• E.g., CLI, GUI,…

• Control Plane: routing, discovery, …
• Control the data plane
• Run the protocol logics

• Data Plane: packet forwarding
• Determine how packets traverse the switching pipeline



Some Terms

3

• Management Plane: device configuration
• Manage the control plane (and the system)
• E.g., CLI, GUI,…

• Control Plane: routing, discovery, …
• Control the data plane
• Run the protocol logics

• Data Plane: packet forwarding
• Determine how packets traverse the switching pipeline



SDN and Limitations

4

• Programmable control plane

• High-bandwidth data plane
• Limited flexibility

https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf



SDN and Limitations

4

• Programmable control plane

• High-bandwidth data plane
• Limited flexibility

https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf

Restricted to conventional packet protocols!



5

Let’s make the data plane programmable.



5

Let’s make the data plane programmable.

But, how to do it?



5

Let’s make the data plane programmable.

But, how to do it?

More importantly, how to make the data 
plane programmable without losing BW?



Fixed Function Switch

6

Pr
ov

id
er

 B
ac

kb
on

e 
Br

id
ge



Fixed Function Switch

6

Pr
ov

id
er

 B
ac

kb
on

e 
Br

id
ge

What programmabilities do we need?



Goal: add flexibility to packet forwarding 
• Add a different header field

• Add a new table

• Add a different action

• Dynamic memory allocation

• Programmable packet scheduling

•……

7



Designing a Flexible Switch is Hard!

• Big chip
• High frequency
• Massive bandwidth
• Wiring intensive
• Many crossbars
• Lots of TCAM
• SerDes
• ……

8



RMT=Reconfigurable Match-action Table

9



 Technique #1: Parser Graph

• Programmable parser
• Arbitrary fields

10

Ethernet

IPV4 IPV6

TCP UDP

Default



 Technique #1: Parser Graph

• Programmable parser
• Arbitrary fields

10

Ethernet

IPV4 IPV6

TCP UDP

Default

Ethernet

IPV4 RCP

TCP UDP

New



Programmable Parser Hardware Architecture

11



 Technique #2: Table Graph

12

• Dynamic table memory provisioning
• No static allocation



 Technique #2: Table Graph

12

• Dynamic table memory provisioning
• No static allocation



Recap: CAMs and RAMs

• RAM:
• Look up the value associated with a memory address

13

• CAM:
• Look up the memory address of a given value
• Binary CAM: exact match (matches on 0 or 1)
• Ternary CAM (TCAM): allow wildcard (matched on 0, 1, or X) 



A CAM Example

14



 Technique #3: Match/Action Forwarding Model

15



 Technique #3: Match/Action Forwarding Model

15



Modeled as Multiple VLIW CPUs per Stage

16

• VLIW = Very Long Instruction Word



It Works

17



How can we use RMT switches to build 
applications?

18



Case Study: Fair Queuing

• Enforce fair allocation and isolation at switches:
• Provide an illustration that every flow has its own queue
• Proven to have perfect isolation and fairness

19

• Benefits:
• Simplify congestion control at the end-host
• Protect against misbehaving traffic
• Enable bounded delay guarantees 



Fair Queueing without Per-flow Queues

20



Fair Queueing without Per-flow Queues

20

• Key idea:
• Simulate an ideal round-robin scheme where each active flow transmits 
a single bit of data every round

• Challenges:
• Track the global round number of each active flow
• Maintain a sorted packet buffer
• Store and update per-flow counters



How can we use RMT switches to 
implement fair queueing?

21



ALUTCAM

…

SRAM

REGs

ALU

ALU

Match + Action

Stage i

Packet
Stream

Pa
rs

er

ALUTCAM

…

SRAM

REGs

ALU

ALU

Match + Action

Stage j

Egress Queues

Traffic manager

RMT Switch

22



• TCAM/SRAM for matches

• Mutable registers for storing flow states

• ALUs for modifying headers and payloads

ALUTCAM

…

SRAM

REGs

ALU

ALU

Match + Action

Stage i

Packet
Stream

Pa
rs

er

ALUTCAM

…

SRAM

REGs

ALU

ALU

Match + Action

Stage j

Egress Queues

Traffic manager

• port = lookup(eth.dst_mac)

• counter[ipv4.dst_port]++

• ipv4.ttl = ipv4.ttl - 1

RMT Switch

22



Challenges of Realizing Fair Queueing

23

• #1: Maintain a sorted packet buffer
• Requirement: O(logN) insert complexity
• Constraint: Limited operations per packet



Challenges of Realizing Fair Queueing

23

• #1: Maintain a sorted packet buffer
• Requirement: O(logN) insert complexity
• Constraint: Limited operations per packet

• #2: Store per-flow counters
• Requirement: Per-flow mutable state
• Constraint: Limited switch memory



Challenges of Realizing Fair Queueing

23

• #1: Maintain a sorted packet buffer
• Requirement: O(logN) insert complexity
• Constraint: Limited operations per packet

• #2: Store per-flow counters
• Requirement: Per-flow mutable state
• Constraint: Limited switch memory

• #3: Access and modify the current round number
• Requirement: Synchronize state across switch modules
• Constraint: Limited cross-module communication



Key idea: approximate fair queueing (AFQ)

24



- - - - - - - -

- - - - - - - -

- - - - - - - -

- - - - - - - -

Packet

hash1()%C
C

R

hash2()%C

hashn()%C

25

AFQ Technique #1: Store Approx. Flow Counters

• Variation of a count-min sketch to track flow finish round number
• Update increments all cells; read returns the minimum
• Never under-estimates, has provable space-accuracy trade-off



26

An Example

• Use switch read-write registers



AFQ Technique #2: Buffer Packets in Approx. Sorted Order

• Coarse rounds:
• Flows transmit a quantum of bytes per round (BpR)
• For each packet, outgoing round number = byte sent / BpR

27



AFQ Technique #3: Rotating Strict Priority Scheduler

• Approximate sorted buffer
• Drain queue with the lowest round number till it is empty
• Push queue to lowest priority; increment round number by 1

28



AFQ Implemementation

29

• Cavium XPliant switch and networking processors
• Xpliant A0 and B0 engineering samples in 2016
• Extensively collaborated with Cavium engineers (Kishore Atreya)



Early RMT Switch Development

30

• Cavium XPliant provides a DSL called XPC



Early RMT Switch Development

30

Parser

Graph

Table

Graph

Action

Logic



P4 Language

• Programming Protocol-Independent Packet Processors
• Originally described in a 2014 SIGCOMM CCR paper

31



32

In-Network Computing 
• Transport layer: bandwidth allocation, telemetry, etc.

• Application layer: caching, scheduling, etc.



32

In-Network Computing 
• Transport layer: bandwidth allocation, telemetry, etc.

• Application layer: caching, scheduling, etc.

But the killer use case (application) is unclear!



RMT Switch Today

• Seems dead,
• Cavium was acquired by Marvell in 2018, but Xpliant Switch products are 
ceased in 2018

• Barefoot was acquired by Intel in 2019, but Tofino Switch products are 
ceased in 2023

33



RMT Switch Today

• Seems dead,
• Cavium was acquired by Marvell in 2018, but Xpliant Switch products are 
ceased in 2018

• Barefoot was acquired by Intel in 2019, but Tofino Switch products are 
ceased in 2023

33

• But not,
• NVIDIA/Mellanox Spectrum switches: microcode programming
• Juniper Trio-based switches: microcode programming
• Cisco dRMT-like (sigcomm’17) model becomes more friendly 



Summary

• Today
• Programmable Switch

• Next
• SDN and programmable networks (III)

34


