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Outline
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• Last lecture
• Software-Defined Network

• Today
• Programmable Switch

• Announcements
• Lab2 due 11/05/2025 11:59 PM
• Midterm report due 11/04/2025 11:59 PM



Some Terms
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• Management Plane: device configuration
• Manage the control plane (and the system)
• E.g., CLI, GUI,…

• Control Plane: routing, discovery, …
• Control the data plane
• Run the protocol logics

• Data Plane: packet forwarding
• Determine how packets traverse the switching pipeline
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SDN and Limitations
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• Programmable control plane

• High-bandwidth data plane
• Limited flexibility

https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
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• Programmable control plane

• High-bandwidth data plane
• Limited flexibility

https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf

Restricted to conventional packet protocols!
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Let’s make the data plane programmable.
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Let’s make the data plane programmable.

But, how to do it?

More importantly, how to make the data 
plane programmable without losing BW?



Fixed Function Switch
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What programmabilities do we need?



Goal: add flexibility to packet forwarding 
• Add a different header field

• Add a new table

• Add a different action

• Dynamic memory allocation

• Programmable packet scheduling

•……

7



Designing a Flexible Switch is Hard!

• Big chip
• High frequency
• Massive bandwidth
• Wiring intensive
• Many crossbars
• Lots of TCAM
• SerDes
• ……
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RMT=Reconfigurable Match-action Table
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 Technique #1: Parser Graph

• Programmable parser
• Arbitrary fields
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Ethernet

IPV4 IPV6

TCP UDP

Default
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• Programmable parser
• Arbitrary fields
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Ethernet

IPV4 IPV6

TCP UDP

Default

Ethernet

IPV4 RCP

TCP UDP

New



Programmable Parser Hardware Architecture
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 Technique #2: Table Graph
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• Dynamic table memory provisioning
• No static allocation
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• Dynamic table memory provisioning
• No static allocation



Recap: CAMs and RAMs

• RAM:
• Look up the value associated with a memory address
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• CAM:
• Look up the memory address of a given value
• Binary CAM: exact match (matches on 0 or 1)
• Ternary CAM (TCAM): allow wildcard (matched on 0, 1, or X) 



A CAM Example
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 Technique #3: Match/Action Forwarding Model
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 Technique #3: Match/Action Forwarding Model

15



Modeled as Multiple VLIW CPUs per Stage
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• VLIW = Very Long Instruction Word



It Works
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How can we use RMT switches to build 
applications?
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Case Study: Fair Queuing

• Enforce fair allocation and isolation at switches:
• Provide an illustration that every flow has its own queue
• Proven to have perfect isolation and fairness
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• Benefits:
• Simplify congestion control at the end-host
• Protect against misbehaving traffic
• Enable bounded delay guarantees 



Fair Queueing without Per-flow Queues
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Fair Queueing without Per-flow Queues
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• Key idea:
• Simulate an ideal round-robin scheme where each active flow transmits 
a single bit of data every round

• Challenges:
• Track the global round number of each active flow
• Maintain a sorted packet buffer
• Store and update per-flow counters



How can we use RMT switches to 
implement fair queueing?
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RMT Switch
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• TCAM/SRAM for matches

• Mutable registers for storing flow states

• ALUs for modifying headers and payloads

ALUTCAM

…
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Traffic manager

• port = lookup(eth.dst_mac)

• counter[ipv4.dst_port]++

• ipv4.ttl = ipv4.ttl - 1

RMT Switch
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Challenges of Realizing Fair Queueing
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• #1: Maintain a sorted packet buffer
• Requirement: O(logN) insert complexity
• Constraint: Limited operations per packet
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Challenges of Realizing Fair Queueing
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• #1: Maintain a sorted packet buffer
• Requirement: O(logN) insert complexity
• Constraint: Limited operations per packet

• #2: Store per-flow counters
• Requirement: Per-flow mutable state
• Constraint: Limited switch memory

• #3: Access and modify the current round number
• Requirement: Synchronize state across switch modules
• Constraint: Limited cross-module communication



Key idea: approximate fair queueing (AFQ)
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AFQ Technique #1: Store Approx. Flow Counters

• Variation of a count-min sketch to track flow finish round number
• Update increments all cells; read returns the minimum
• Never under-estimates, has provable space-accuracy trade-off



26

An Example

• Use switch read-write registers



AFQ Technique #2: Buffer Packets in Approx. Sorted Order

• Coarse rounds:
• Flows transmit a quantum of bytes per round (BpR)
• For each packet, outgoing round number = byte sent / BpR
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AFQ Technique #3: Rotating Strict Priority Scheduler

• Approximate sorted buffer
• Drain queue with the lowest round number till it is empty
• Push queue to lowest priority; increment round number by 1
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AFQ Implemementation
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• Cavium XPliant switch and networking processors
• Xpliant A0 and B0 engineering samples in 2016
• Extensively collaborated with Cavium engineers (Kishore Atreya)



Early RMT Switch Development
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• Cavium XPliant provides a DSL called XPC



Early RMT Switch Development
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Parser

Graph

Table

Graph

Action

Logic



P4 Language

• Programming Protocol-Independent Packet Processors
• Originally described in a 2014 SIGCOMM CCR paper
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In-Network Computing 
• Transport layer: bandwidth allocation, telemetry, etc.

• Application layer: caching, scheduling, etc.
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In-Network Computing 
• Transport layer: bandwidth allocation, telemetry, etc.

• Application layer: caching, scheduling, etc.

But the killer use case (application) is unclear!



RMT Switch Today

• Seems dead,
• Cavium was acquired by Marvell in 2018, but Xpliant Switch products are 
ceased in 2018

• Barefoot was acquired by Intel in 2019, but Tofino Switch products are 
ceased in 2023

33
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• But not,
• NVIDIA/Mellanox Spectrum switches: microcode programming
• Juniper Trio-based switches: microcode programming
• Cisco dRMT-like (sigcomm’17) model becomes more friendly 



Summary

• Today
• Programmable Switch

• Next
• SDN and programmable networks (III)
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